13.已知函數(shù)$f(x)=\sqrt{-{x^2}+2x+8}$的定義域?yàn)榧螦,函數(shù)g(x)=lg(-x2+6x+m)的定義域?yàn)榧螧.
(1)當(dāng)m=-5時(shí),求A∩∁UB;
(2)若A∩B={x|-1<x≤4},求實(shí)數(shù)m的值.

分析 (1)由偶次根號下被開方數(shù)大于等于零列出不等式求出A,由真數(shù)大于零列出不等式求出B,由補(bǔ)集的運(yùn)算求出∁UB,由交集的運(yùn)算求出A∩∁UB;
(2)由條件、交集的運(yùn)算、一元二次不等式的解法,列出關(guān)于m的方程,求出實(shí)數(shù)m的值.

解答 解:(1)由-x2+2x+8≥0得-2≤x≤4,
∴集合A=[-2,4],
當(dāng)m=-5時(shí),g(x)=lg(-x2+6x+m)=lg(-x2+6x-5),
由-x2+6x-5>0得1<x<5,
∴集合B=(1,5),則∁UB=(-∞,1]∪[5,+∞)
∴A∩CUB=[-2,1];
(2)∵A=[-2,4],A∩B={x|-1<x≤4}=(-1,4],
且集合B={x|-x2+6x+m>0 },
∴-1是方程-x2+6x+m=0其中一個(gè)根,
則-1-6+m=0,解得m=7,
∴實(shí)數(shù)m的值是7.

點(diǎn)評 本題考查交、并、補(bǔ)集的混合運(yùn)算,一元二次不等式的解法,以及函數(shù)的定義域求法,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.△ABC的三個(gè)內(nèi)角A、B、C的對邊分別是a、b、c,如果a2=b(b+c).那么A-2B=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某商店每雙皮鞋的進(jìn)貨價(jià)為80元,根據(jù)以往經(jīng)驗(yàn),以每雙90元銷售時(shí),每月能賣出400雙,而每加價(jià)1元或減價(jià)1元銷售時(shí),每月銷量會(huì)減少或增加20雙,為了每月獲取最大利潤,商店應(yīng)如何定價(jià)?每月的最大利潤為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知三點(diǎn)P1(1,1,0),P2(0,1,1)和P3(1,0,1),O是坐標(biāo)原點(diǎn),則|$\overrightarrow{O{P}_{1}}$+$\overrightarrow{O{P}_{2}}$+$\overrightarrow{O{P}_{3}}$|=(  )
A.2B.4C.$2\sqrt{3}$D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下列函數(shù)中,既不是奇函數(shù),也不是偶函數(shù)的是( 。
A.$y={2^x}+\frac{1}{2^x}$B.$y=sinx+\frac{1}{x}$C.y=x2+cosxD.$y=x+\frac{1}{x^2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知二次函數(shù)f(x)=x2+mx+n.
(1)若f(x)是偶函數(shù)且最小值為1,求f(x)的解析式;
(2)在(1)的前提下,函數(shù)$g(x)=\frac{6x}{f(x)}$,解關(guān)于x的不等式g(2x)>2x;
(3)函數(shù)h(x)=|f(x)|,若x∈[-1,1]時(shí)h(x)的最大值為M,且M≥k對任意實(shí)數(shù)m,n恒成立,求k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.口袋內(nèi)裝有一些大小相同的紅球、白球和黑球,從中摸出1個(gè)球,摸出紅球的概率是0.41,摸出白球的概率是0.27,那么摸出黑球的概率是0.32.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{25}$=1的焦點(diǎn)為F1、F2,AB是橢圓過焦點(diǎn)F1的弦,則△ABF2的周長是20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)$f(x)=2\sqrt{3}sinxcosx+2{cos^2}x-1$,則下列說法正確的是( 。
A.$(\frac{7π}{12},0)$是函數(shù)y=f(x)的對稱中心B.$x=\frac{7π}{12}$是函數(shù)y=f(x)的對稱軸
C.$(-\frac{π}{12},0)$是函數(shù)y=f(x)的對稱中心D.$x=-\frac{π}{12}$是函數(shù)y=f(x)的對稱軸

查看答案和解析>>

同步練習(xí)冊答案