將n2個正整數(shù)1,2,3,…,n2填入n×n方格中,使得每行、每列、每條對角線上的數(shù)的和相等,這個正方形就叫做n階幻方.記f(n)為n階幻方對角線的和,如右表就是一個3階幻方,可知f(3)=15,則f(4)=( )
A.32
B.33
C.34
D.35
【答案】分析:欲求4階幻方對角線上數(shù)之和,只需求每一行上數(shù)之和,由n階幻方定義可知,4階幻方由1到42,共16個連續(xù)自然數(shù)構成,且每一行都相等,所以,只需求出所有數(shù)之和,再除以4即可得答案.
解答:解:由等差數(shù)列得前n項和公式可得,所有數(shù)之和S=1+2+3+…+42==136,
所以,f(4)==34,
故選C.
點評:本題主要考查了等差數(shù)列的性質(zhì),考查學生分析解決問題的能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

將n2個正整數(shù)1,2,3,…,n2填入n×n方格中,使其每行、每列、每條對角線上的數(shù)的和都相等,這個正方形叫做n階幻方.記f(n)為n階幻方對角線上數(shù)的和,如右圖就是一個3階幻方,可知f(3)=15.已知將等差數(shù)列:3,4,5,…前16項填入4×4方格中,可得到一個4階幻方,則其對角線上數(shù)的和f(4)等于(  )
8 3 4
1 5 9
6 7 2
A、36B、42C、34D、44

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•肇慶二模)將n2個正整數(shù)1,2,3,…,n2填入n×n方格中,使得每行、每列、每條對角線上的數(shù)的和相等,這個正方形就叫做n階幻方.記f(n)為n階幻方對角線的和,如右表就是一個3階幻方,可知f(3)=15,則f(4)=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(文)將n2個正整數(shù)1,2,3,…n2填入n×n個方格中,使得每行、每列、每條對角線上的數(shù)的和相等,這個正方形就叫做n階幻方,如圖就是一個3 階幻方,定義f(n)為n階幻方對角線上數(shù)的和,例如f(3)=15,則f(4)=
 

8 1 6
3 5 7
4 9 2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將n2個正整數(shù)1,2,3,…,n2填入n×n方格中,使其每行、每列、每條對角線上的數(shù)的和相等,這個正方形叫做n階幻方.記f(n)為n階幻方對角線的和,如右圖就是一個3階幻方,可知f(3)=15,,則f(5)=( 。
8 3 4
1 5 9
6 7 2

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年上海市浦東新區(qū)建平中學高三(下)3月月考數(shù)學試卷(解析版) 題型:填空題

(文)將n2個正整數(shù)1,2,3,…n2填入n×n個方格中,使得每行、每列、每條對角線上的數(shù)的和相等,這個正方形就叫做n階幻方,如圖就是一個3 階幻方,定義f(n)為n階幻方對角線上數(shù)的和,例如f(3)=15,則f(4)=   
816
357
492

查看答案和解析>>

同步練習冊答案