【題目】一個(gè)人以6米/秒的勻速度去追趕停在交通燈前的汽車,當(dāng)他離汽車25米時(shí)交通燈由紅變綠,汽車開始作變速直線行駛(汽車與人的前進(jìn)方向相同),汽車在時(shí)刻t的速度為v(t)=t米/秒,那么,此人(
A.可在7秒內(nèi)追上汽車
B.可在9秒內(nèi)追上汽車
C.不能追上汽車,但其間最近距離為14米
D.不能追上汽車,但其間最近距離為7米

【答案】D
【解析】解答:∵汽車在時(shí)刻t的速度為v(t)=t米/秒∴a= =1M/S
由此判斷為勻加速運(yùn)動(dòng)
再設(shè)人于x秒追上汽車,有6x﹣25=
x無解,因此不能追上汽車
①為一元二次方程,求出最近距離為7米
故選D
分析:首先根據(jù)題意汽車在時(shí)刻t的速度為v(t)=t米/秒,求出加速度a,然后建立一元二次方程,求解可以判斷不能追上汽車,最后判斷最短距離即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,多面體中,四邊形是菱形, , 相交于 ,點(diǎn)在平面上的射影恰好是線段的中點(diǎn).

(Ⅰ)求證: 平面;

(Ⅱ)若直線與平面所成的角為,求平面與平面所成角(銳角)的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2+2mx+3m+4,
(1)若f(x)在(﹣∞,1]上單調(diào)遞減,求m的取值范圍;
(2)求f(x)在[0,2]上的最大值g(m).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直線坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,直線的參數(shù)方程為為參數(shù)),曲線的極坐標(biāo)方程為.

(1)直線的普通方程和曲線的參數(shù)方程;

(2)設(shè)點(diǎn)上, 處的切線與直線垂直,求的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知奇函數(shù)f(x)在x≥0時(shí)的圖象是如圖所示的拋物線的一部分,
(1)請(qǐng)補(bǔ)全函數(shù)f(x)的圖象

(2)求函數(shù)f(x)的表達(dá)式,
(3)寫出函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)y=2sin(2x+ )的圖象向右平移 個(gè)周期后,所得圖象對(duì)應(yīng)的函數(shù)為(
A.y=2sin(2x+
B.y=2sin(2x+
C.y=2sin(2x﹣
D.y=2sin(2x﹣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ex(axb)-x2-4x,曲線yf(x)在點(diǎn)(0,f(0))處的切線方程為y=4x+4.

(1)求a,b的值;

(2)討論f(x)的單調(diào)性,并求f(x)的極大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰三角形ABC中,AB=AC,D為CB延長(zhǎng)線上一點(diǎn),E為BC延長(zhǎng)線上一點(diǎn),且滿足AB2=DBCE.

(1)求證:△ADB∽△EAC;
(2)若∠BAC=40°,求∠DAE的度數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)甲、乙、丙三人進(jìn)行圍棋比賽,每局兩人參加,沒有平局.在一局比賽中,甲勝乙的概率為 ,甲勝丙的概率為 ,乙勝丙的概率為 .比賽順序?yàn)椋菏紫扔杉缀鸵疫M(jìn)行第一局的比賽,再由獲勝者與未參加比賽的選手進(jìn)行第二局的比賽,依此類推,在比賽中,有選手獲勝滿兩局就取得比賽的勝利,比賽結(jié)束.
(1)求只進(jìn)行了三局比賽,比賽就結(jié)束的概率;
(2)記從比賽開始到比賽結(jié)束所需比賽的局?jǐn)?shù)為ξ,求ξ的概率分布列和數(shù)學(xué)期望Eξ.

查看答案和解析>>

同步練習(xí)冊(cè)答案