1.已知函數(shù)f(x)=2sin2x+cos(2x-$\frac{π}{3}$)-1
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)在區(qū)間[$\frac{π}{12}$,$\frac{π}{2}$]上的值域.

分析 (1)利用三角函數(shù)的恒等變換化簡函數(shù)的解析式,再利用正弦函數(shù)的周期性求得f(x)的最小正周期.
(2)利用正弦函數(shù)的定義域和值域,求得函數(shù)f(x)在區(qū)間[$\frac{π}{12}$,$\frac{π}{2}$]上的值域.

解答 解:(1)函數(shù)f(x)=2sin2x+cos(2x-$\frac{π}{3}$)-1=cos(2x-$\frac{π}{3}$)-cos2x=cos2xcos$\frac{π}{3}$-sin2xsin$\frac{π}{3}$-cos2x
=-$\frac{1}{2}$cos2x+$\frac{\sqrt{3}}{2}$sin2x=sin(2x-$\frac{π}{6}$),
故它的周期為$\frac{2π}{2}$=π.
(2)因為x∈[$\frac{π}{12}$,$\frac{π}{2}$],所以2x-$\frac{π}{6}$∈[0,$\frac{5π}{6}$],sin(2x-$\frac{π}{6}$)∈[0,1],即函數(shù)f(x) 在區(qū)間[$\frac{π}{12}$,$\frac{π}{2}$]上的值域為[0,1].

點評 本題主要考查三角函數(shù)的恒等變換,正弦函數(shù)的周期性、定義域和值域,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

1.函數(shù)$f(x)={({\frac{1}{2}})^{|x|}}-{x^2}$+2的圖象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.某家庭連續(xù)五年收入x與支出y如表:
年份20122013201420152016
收入(萬元)8.28.610.011.311.9
支出(萬元)6.27.58.08.59.8
畫散點圖知:y與x線性相關,且求得的回歸方程是y=bx+a,其中b=0.76,則據(jù)此預計該家庭2017年若收入15萬元,支出為(  )萬元.
A.11.4B.11.8C.12.0D.12.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.函數(shù)$y=\frac{{{x^2}ln|x|}}{|x|}$的圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.函數(shù)y=$\frac{x{a}^{x}}{|x|}$(0<a<1)的圖象的大致形狀是④(填正確的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知條件p:log2(x-1)<1的解,q:x2-2x-3<0的解,則p是q的( 。l件.
A.充分非必要B.必要非充分
C.充分必要D.既非充分又非必要

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知矩形ABCD的面積為8,當矩形周長最小時,沿對角線AC把△ACD與折起,則三棱錐D-ABC的外接球的體積為$\frac{32}{3}π$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.在等差數(shù)列{an}中,Sn為數(shù)列{an}的前n項和,且滿足S9=-9,S10=-5.
(1)求數(shù)列{an}的通項公式;
(2)求Sn,并指出當n為何值時,Sn取最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知函數(shù)f(x)=2ax+bx-1-2lnx(a∈R).
(1)當b=0時,討論函數(shù)f(x)的單調(diào)區(qū)間;
(2)若對任意的a∈[1,2]和x∈(0,+∞),f(x)≥2bx-3恒成立,求實數(shù)b的取值范圍;
(3)當x>y>e-1時,求證:exln(y+1)>eyln(x+1).

查看答案和解析>>

同步練習冊答案