有下列命題:
①命題“?x∈R,使得x2+1>3x”的否定是“?x∈R,都有x2+1<3x”;
②設(shè)p、q為簡(jiǎn)單命題,若“p∨q”為假命題,則“¬p∧¬q為真命題”;
③“a>3”是“a>π”的充分不必要條件;
④若函數(shù)f(x)=(x+2)(x+a)為偶函數(shù),則a=-2;
其中所有正確的說(shuō)法序號(hào)是
②④
②④
分析:①根據(jù)命題“?x∈R,使得x2+1>3x”是特稱(chēng)命題,其否定為全稱(chēng)命題,即“?x∈R,都有x2+1≤3x,從而進(jìn)行判斷;命題②中若p∨q為假命題說(shuō)明p、q中全為假,從而得出復(fù)合命題¬p∧¬q的真假;③分別判斷“a>3”⇒“a>π”與“a>π”⇒“a>3”的真假,進(jìn)而根據(jù)充要條件的定義可得答案.④依據(jù)f(x)=f(-x)求出a的值.
解答:解:①解:∵命題“?x∈R,使得x2+1>3x”是特稱(chēng)命題
∴否定命題為“?x∈R,都有x2+1≤3x;故①錯(cuò);
②p∨q為假命題說(shuō)明p、q中全為假,則¬p∧¬q為真命題,故命題②正確.
③當(dāng)“a>3”時(shí),“a>π”不一定成立
當(dāng)“a>π”成立時(shí),“a>3”成立
即“a>3”是“a>π”必要不充分條件
故③不正確;
④f(x)=(x+2)(x+a)為偶函數(shù)
∴f(x)=f(-x),即)(x+2)(x+a)=(-x+2)(-x+a),
得a=-2.正確;
其中所有正確的說(shuō)法序號(hào)是 ②④
故答案為:②④.
點(diǎn)評(píng):本題是復(fù)合命題部分綜合性較強(qiáng)的問(wèn)題,考查知識(shí)全面,能考查學(xué)生的綜合處理問(wèn)題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:廣東省深圳高級(jí)中學(xué)2010-2011學(xué)年高二上學(xué)期期中考試數(shù)學(xué)文科試題 題型:013

有下列四個(gè)命題,其中真命題有:

①“若x+y=0,則x,y互為相反數(shù)”的逆命題;

②“全等三角形的面積相等”的否命題;

③“若q≤1,則x2+2x+q=0有實(shí)根”的逆命題;

④“若a>b,則ac2>bc2”的逆否命題;

[  ]
A.

①②

B.

①③

C.

②③

D.

③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:廣東省深圳高級(jí)中學(xué)2011-2012學(xué)年高二上學(xué)期期中測(cè)試數(shù)學(xué)文科試題 題型:013

有下列四個(gè)命題,其中真命題有:

①“若x+y=0,則x,y互為相反數(shù)”的逆命題;

②“全等三角形的面積相等”的否命題;

③“若q≤1,則x2+2x+q=0有實(shí)根”的逆命題;

④“若a>b,則ac2>bc2”的逆否命題;

[  ]
A.

①②

B.

①③

C.

②③

D.

③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:寧夏銀川一中2012屆高三第一次模擬考試數(shù)學(xué)文科試題 題型:013

有下列命題:

①設(shè)集合M={x|0<x≤3},N={x|0<x≤2},則“aM”是“aN”的充分而不必要條件;

②命題“若a∈M,則bM”的逆否命題是:若b∈M,則aM;

③若p∧q是假命題,則p,q都是假命題;

④命題P:“x0∈R,-x0-1>0”的否定:“x∈R,x2-x-1≤0”

則上述命題中為真命題的是

[  ]

A.①②③④

B.①③④

C.②④

D.②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:寧夏銀川一中2012屆高三第一次模擬考試數(shù)學(xué)(文)試題 題型:013

有下列命題:

①設(shè)集合M={x|0<x≤3},N={x|0<x≤2},則”a∈M”是”a∈N”的充分而不必要條件;

②命題”若a∈M,則bM”的逆否命題是:若b∈M,則aM;

③若p∧q是假命題,則p,q都是假命題;

④命題P:”x0∈R,x-x0-1>0”的否定p:”x∈R,x2-x-1≤0”

則上述命題中為真命題的是

[  ]

A.①②③④

B.①③④

C.②④

D.②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆山東省淄博市高二下學(xué)期期中模塊檢測(cè)文科數(shù)學(xué)試卷(解析版) 題型:填空題

 有下列命題:

①設(shè)集合M={x|0<x≤3},N={x|0<x≤2},則“aM”是“a∈N”的充分而不必要條件;

②命題:“若aM,則bM”的逆否命題是:若bM,則aM;

③若pq是假命題,則p、q都是假命題;

④命題P:“x0∈R,xx0-1>0”的否定P:“x∈R,x2x-1≤0”.

其中真命題的序號(hào)是________.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案