A. | $\frac{9}{10}$ | B. | $\frac{10}{11}$ | C. | $\frac{11}{10}$ | D. | $\frac{12}{11}$ |
分析 利用遞推關系式,判斷數(shù)列{$\frac{1}{{a}_{n}}$}是以1為首項,1為公差的等差數(shù)列,求出通項公式,然后化簡所求的思路的通項公式,利用裂項法求解即可.
解答 解:數(shù)列{an}滿足a1=1,an=$\frac{{a}_{n-1}}{{a}_{n-1+1}}$(n≥2),依題意an>0且n≥2時,
an=$\frac{{a}_{n-1}}{{a}_{n-1+1}}$,可得$\frac{1}{{a}_{n}}-\frac{1}{{a}_{n-1}}=1$,
∴數(shù)列{$\frac{1}{{a}_{n}}$}是以1為首項,1為公差的等差數(shù)列,
∴$\frac{1}{{a}_{n}}$=n,即an=$\frac{1}{n}$,∴an•an+1$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$,
∴S10=1$-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}$$+…+\frac{1}{10}-\frac{1}{11}$=$\frac{10}{11}$.
故選B.
點評 本題考查數(shù)列的遞推關系式的應用,數(shù)列求和的方法,考查計算能力.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 2 | C. | $\frac{1}{3}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=2x+1 | B. | y=3x2+1 | C. | y=$\frac{2}{x}$ | D. | y=3x2+x+1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 24 cm | B. | 21 cm | C. | (24+4$\sqrt{2}$)cm2 | D. | (20+4$\sqrt{2}$)cm2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com