【題目】已知函數(shù).
(1)若,求曲線在點(diǎn)處的切線方程;
(2)若在處取得極小值,求實(shí)數(shù)的取值范圍.
【答案】(1);(2).
【解析】試題分析:(1)當(dāng)時(shí), ,利用導(dǎo)數(shù)幾何意義,求出函數(shù)在處的切線斜率,再求出切線方程;(2)對(duì)函數(shù)求導(dǎo),令,討論的單調(diào)性,對(duì) 分情況討論,得出實(shí)數(shù)的取值范圍.
試題解析:(1)當(dāng)時(shí), , , ,所以曲線在點(diǎn)處的切線方程為.
(2)由已知得,則,
記,則,
①當(dāng), 時(shí), ,函數(shù)單調(diào)遞增,
所以當(dāng)時(shí), ,當(dāng)時(shí), ,
所以在處取得極小值,滿(mǎn)足題意.
②當(dāng)時(shí), 時(shí), ,函數(shù)單調(diào)遞增,
可得當(dāng)時(shí), , 時(shí), 當(dāng),
所以在處取得極小值,滿(mǎn)足題意.
③當(dāng)時(shí),當(dāng)時(shí), ,函數(shù)單調(diào)遞增,
時(shí), , 在內(nèi)單調(diào)遞減,
所以當(dāng)時(shí), , 單調(diào)遞減,不合題意.
④當(dāng)時(shí),即,當(dāng)時(shí), , 單調(diào)遞減,
,當(dāng)時(shí), , 單調(diào)遞減, ,
所以在處取得極大值,不合題意.
綜上可知,實(shí)數(shù)的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合A={x|1<x<3},集合B={x|2m<x<1-m}.
(1)當(dāng)m=-1時(shí),求A∪B;
(2)若AB,求實(shí)數(shù)m的取值范圍;
(3)若A∩B=,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,將一矩形花壇ABCD擴(kuò)建成一個(gè)更大的矩形花壇AMPN,要求B點(diǎn)在AM上,D點(diǎn)在AN上,且對(duì)角線MN過(guò)點(diǎn)C,已知AB=3米,AD=2米.
(Ⅰ)要使矩形AMPN的面積大于32平方米,則DN的長(zhǎng)應(yīng)在什么范圍內(nèi)?
(Ⅱ)當(dāng)DN的長(zhǎng)度為多少時(shí),矩形花壇AMPN的面積最?并求出最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=loga (a>0,a≠1,m≠﹣1),是定義在(﹣1,1)上的奇函數(shù).
(1)求f(0)的值和實(shí)數(shù)m的值;
(2)當(dāng)m=1時(shí),判斷函數(shù)f(x)在(﹣1,1)上的單調(diào)性,并給出證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知冪函數(shù)f(x)的圖象經(jīng)過(guò)點(diǎn)(3, )
(1)求函數(shù)f(x)的解析式;
(2)判斷函數(shù)f(x)在(0,+∞)上的單調(diào)性,并用定義證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)=ax2+2(a﹣3)x+1在區(qū)間[﹣2,+∞)上遞減,則實(shí)數(shù)a的取值范圍是( )
A.(﹣∞,﹣3]
B.[﹣3,0]
C.[﹣3,0)
D.[﹣2,0]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)古代數(shù)學(xué)著作《九章算術(shù)》有“今有金箠,長(zhǎng)五尺,斬本一尺,重四斤,斬末一尺,重二斤,問(wèn)次一尺各重幾何?”意思是:“現(xiàn)有一根金箠,一頭粗,一頭細(xì),在粗的一端截下1尺,重4斤;在細(xì)的一端截下1尺,重2斤;問(wèn)依次每一尺各重多少斤?”根據(jù)上題的已知條件,若金箠由粗到細(xì)是依次等量減小的,則正中間一尺的重量為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓: ,橢圓以的長(zhǎng)軸為短軸,且與有相同的離心率.
(1)求橢圓的方程;
(2)設(shè)為坐標(biāo)原點(diǎn),點(diǎn)分別在橢圓和上, ,求直線的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com