【題目】已知二次函數(shù)的對(duì)稱軸為,.

1)求函數(shù)的最小值及取得最小值時(shí)的值;

2)試確定的取值范圍,使至少有一個(gè)實(shí)根;

3)當(dāng)時(shí),,對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.

【答案】(1,此時(shí);(2的取值范圍為;(3)實(shí)數(shù)的取值范圍為.

【解析】

試題分析:(1)利用基本不等式易得,此時(shí).2至少有一個(gè)實(shí)根,即的圖象在上至少有一個(gè)交點(diǎn),由題意,可得,,則需即可;(3)由題意,可得,對(duì)任意恒成立,,令,,,

討論函數(shù)的單調(diào)性,即可得到實(shí)數(shù)的取值范圍.

試題解析:1,,

,當(dāng)且僅當(dāng),即時(shí)=成立,即,此時(shí).

2的對(duì)稱軸為,,

至少有一個(gè)實(shí)根,至少有一個(gè)實(shí)根,

的圖象在上至少有一個(gè)交點(diǎn),

,,,

,的取值范圍為.

3,

對(duì)任意恒成立,,

,,,

,設(shè)上任意兩不等實(shí)數(shù),且

,

,,,

上單調(diào)遞增,

,.

實(shí)數(shù)的取值范圍為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】口袋中裝有質(zhì)地大小完全相同的5個(gè)球,編號(hào)分別為1,2,3,4,5,甲、乙兩人玩一種游戲:甲先摸一個(gè)球,記下編號(hào),放回后乙再摸一個(gè)球,記下編號(hào)如果兩個(gè)編號(hào)的和為偶數(shù)就算甲勝,否則算乙勝

1求甲勝且編號(hào)的和為6的事件發(fā)生的概率;

2這種游戲規(guī)則公平嗎?說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

函數(shù)的圖象與的圖象無公共點(diǎn),求實(shí)數(shù)的取值范圍;

是否存在實(shí)數(shù),使得對(duì)任意的,都有函數(shù)的圖象在的圖象的下方?若存在,請(qǐng)求出整數(shù)的最大值;若不存在,請(qǐng)說理由.

(參考數(shù)據(jù):,,).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1求函數(shù)的極值;

2設(shè),比較與1的大小關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為方便市民休閑觀光,市政府計(jì)劃在半徑為200米,圓心角為的扇形廣場(chǎng)內(nèi)(如圖所示),沿邊界修建觀光道路,其中分別在線段上,且兩點(diǎn)間距離為定長(zhǎng).

1)當(dāng)時(shí),求觀光道段的長(zhǎng)度;

2)為提高觀光效果,應(yīng)盡量增加觀光道路總長(zhǎng)度,試確定圖中兩點(diǎn)的位置,使觀光道路總長(zhǎng)度達(dá)到最長(zhǎng)?并求出總長(zhǎng)度的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,GH是東西方向的公路北側(cè)的邊緣線,某公司準(zhǔn)備在GH上的一點(diǎn)B的正北方向的A處建設(shè)一倉庫,設(shè),并在公路北側(cè)建造邊長(zhǎng)為的正方形無頂中轉(zhuǎn)站CDEF(其中EF在GH上),現(xiàn)從倉庫A向GH和中轉(zhuǎn)站分別修兩條道路AB,AC,已知AB=AC+1,且.

(1)求關(guān)于的函數(shù)解析式,并求出定義域;

(2)如果中轉(zhuǎn)站四堵圍墻造價(jià)為10萬元/km,兩條道路造價(jià)為30萬元/km,問:取何值時(shí),該公司建設(shè)中轉(zhuǎn)站圍墻和兩條道路總造價(jià)M最低.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一次籃球定點(diǎn)投籃訓(xùn)練中,規(guī)定每人最多投3次,在處每投進(jìn)一球得3分;在處每投進(jìn)一球得2分,如果前兩次得分之和超過3分就停止投籃;否則投第3次,某同學(xué)在處的抽中率,在處的抽中率為,該同學(xué)選擇現(xiàn)在處投第一球,以后都在處投,且每次投籃都互不影響,用表示該同學(xué)投籃訓(xùn)練結(jié)束后所得的總分,其分布列為:

0

2

3

4

5

0.03

1的值;

2求隨機(jī)變量的數(shù)學(xué)期望;

3試比較該同學(xué)選擇上述方式投籃得分超過3分與選擇都在處投籃得分超過3分的概率的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an}中,a2=5,S5=40.等比數(shù)列{bn}中,b1=3,b4=81,

(1)求{an}{bn}的通項(xiàng)公式

(2)令cn=anbn,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為坐標(biāo)原點(diǎn),橢圓的左、右焦點(diǎn)分別為,右頂點(diǎn)為,上頂點(diǎn)為, 成等比數(shù)列,橢圓上的點(diǎn)到焦點(diǎn)的最短距離為

1求橢圓的標(biāo)準(zhǔn)方程;

2設(shè)為直線上任意一點(diǎn),過的直線交橢圓于點(diǎn),且,求的最小值

查看答案和解析>>

同步練習(xí)冊(cè)答案