分析 由已知直線過左焦點(diǎn)F1,且其傾斜角為60°,∠MF1F2=2∠MF2F1,可得∠MF1F2=60°,∠MF2F1=30°,即F1M⊥F2M,運(yùn)用直角三角形的性質(zhì)和雙曲線的定義,由離心率公式計(jì)算即可得到所求值.
解答 解:∵直線y=$\sqrt{3}$(x+c)過左焦點(diǎn)F1,且其傾斜角為60°,
∠MF1F2=2∠MF2F1,
∴∠MF1F2=60°,∠MF2F1=30°.
∴∠F1MF2=90°,即F1M⊥F2M.
∴|MF1|=$\frac{1}{2}$|F1F2|=c,|MF2|=|F1F2|sin600=$\sqrt{3}$c,
由雙曲線的定義有:|MF2|-|MF1|=$\sqrt{3}$c-c=2a,
∴離心率e=$\frac{c}{a}$=$\frac{2}{\sqrt{3}-1}$=$\sqrt{3}$+1.
故答案為:1$+\sqrt{3}$.
點(diǎn)評 本題考查雙曲線的離心率的求法,注意運(yùn)用雙曲線的定義和直角三角形的銳角三角函數(shù)的定義,考查運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $({-3,-1}]∪({-\frac{1}{2},1}]∪({2,+∞})$ | B. | $({-∞,-2}]∪({-1,-\frac{1}{2}}]∪({1,{{log}_2}3})$ | ||
C. | $({-∞,-1}]∪({0,\frac{1}{2}}]∪({1,+∞})$ | D. | (-∞,-3]∪(-1,0]∪(1,log23) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{16}{3}$ | B. | $\frac{64}{3}$ | C. | $\frac{80}{3}$ | D. | $\frac{43}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 18 | B. | 36 | C. | 72 | D. | 144 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com