在平面直角坐標(biāo)系中,已知橢圓∶的左、右焦點分別、焦距為,且與雙曲線共頂點.為橢圓上一點,直線交橢圓于另一點.
(1)求橢圓的方程;
(2)若點的坐標(biāo)為,求過、、三點的圓的方程;
(3)若,且,求的最大值.
(1)(2);(3)
【解析】
試題分析:(1)由題易得橢圓中,可得橢圓方程;
(2)因為點的坐標(biāo)為,故,可得的方程為,聯(lián)立
直線方程和橢圓方程得,,可得圓心坐標(biāo)和半徑,則圓的方程可求;
(3)由題,設(shè),,
可得,將其代入橢圓方程解得 ,,
由,,即得的最大值
1)【解析】
由題意得,故橢圓的方程為.
(2)因為所以的方程為
由 解得點的坐標(biāo)為. 因為所以為直角三角形
因為的中點為,,
所以圓的方程為.
(3)設(shè),則,
因為 ,所以即
所以解得
所以
因為 ,所以,當(dāng)且僅當(dāng),即時,取等號.
最大值為.
考點:橢圓的標(biāo)準(zhǔn)方程,圓的標(biāo)準(zhǔn)方程,直線與圓的位置關(guān)系,基本不等式
科目:高中數(shù)學(xué) 來源:2015屆廣東省高二下學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題
在平面直角坐標(biāo)系中,不等式表示的平面區(qū)域的面積是
A.8 B.4 C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆廣東省梅州市高二下學(xué)期期中理科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知{1,2}⊆Z⊆{1, 2,3,4,5},滿足這個關(guān)系式的集合Z共有 ( ).
A.2個 B.6個 C.4個 D.8個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆廣東省梅州市高二下學(xué)期期中文科數(shù)學(xué)試卷(解析版) 題型:填空題
等差數(shù)列的前項和為,若,則
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆廣東省梅州市高二下學(xué)期期中文科數(shù)學(xué)試卷(解析版) 題型:選擇題
在區(qū)間之間隨機(jī)抽取一個數(shù),則 滿足的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆廣東省高二下學(xué)期期中理科數(shù)學(xué)試卷(解析版) 題型:填空題
設(shè)表示不超過的最大整數(shù),如,.給出下列命題:
①對任意實數(shù),都有;
②對任意實數(shù)、,都有;③;
④若函數(shù),當(dāng)時,令的值域為A,記集合A的元素個數(shù)為,則的最小值為.
其中所有真命題的序號是_________________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆廣東省高二下學(xué)期期中理科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知、是雙曲線(,)的左右兩個焦點,過點作垂直于軸的直線與雙曲線的兩條漸近線分別交于,兩點,是銳角三角形,則該雙曲線的離心率的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆廣東省高二下學(xué)期期中文科數(shù)學(xué)試卷(解析版) 題型:填空題
在長為的線段上任取一點, 則點與線段兩端點、的距離都大于的概率是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆廣東省惠州市高三第一次調(diào)研考試文科數(shù)學(xué)試卷(解析版) 題型:填空題
變量、滿足線性約束條件,則目標(biāo)函數(shù)的最大值為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com