12.如圖所示,A是函數(shù)f(x)=2x的圖象上的動點(diǎn),過點(diǎn)A作直線平行于x軸,交函數(shù)g(x)=2x+2的圖象于點(diǎn)B,若函數(shù)f(x)=2x的圖象上存在點(diǎn)C使得△ABC為等邊三角形,則稱A為函數(shù)f(x)=2x上的好位置點(diǎn).函數(shù)f(x)=2x上的好位置點(diǎn)的個數(shù)為( 。
A.0B.1C.2D.大于2

分析 根據(jù)題意,設(shè)出A、B、C的坐標(biāo),由線段AB∥x軸,△ABC是等邊三角形,x=log2(m-$\sqrt{3}$)=log2m-1,求出m的值,計(jì)算出結(jié)果.

解答 解:根據(jù)題意,設(shè)A,B的縱坐標(biāo)為m,
則A(log2m,m),B(log2m-2,m),
∴AB=log2m-log2m+2=2,
設(shè)C(x,2x),
∵△ABC是等邊三角形,
∴點(diǎn)C到直線AB的距離為$\sqrt{3}$,
∴m-2x=$\sqrt{3}$,
∴x=log2(m-$\sqrt{3}$),
∴x=$\frac{1}{2}$(log2m+log2m-2)=log2m-1,
∴l(xiāng)og2(m-$\sqrt{3}$)=log2m-1=log2$\frac{m}{2}$,
∴m-$\sqrt{3}$=$\frac{m}{2}$,
解得m=2$\sqrt{3}$,
∴x=log2(m-$\sqrt{3}$)=log2$\sqrt{3}$,
函數(shù)f(x)=2x上的好位置點(diǎn)的個數(shù)為1個,
故選:B.

點(diǎn)評 本題考查了指數(shù)函數(shù)圖象與性質(zhì)的應(yīng)用問題,也考查了指數(shù),對數(shù)的運(yùn)算問題,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知雙曲線$\frac{x^2}{9}$-$\frac{y^2}{16}$=1上一點(diǎn)M的橫坐標(biāo)為4,則點(diǎn)M到左焦點(diǎn)的距離是$\frac{29}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若ax2+ax+a+3≥0對一切實(shí)數(shù)x恒成立,則實(shí)數(shù)a的取值范圍是( 。
A.(-4,0)B.(-∞,-4)∪(0,+∞)C.[0,+∞)D.(-4,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.集合M={a|0<2a-1≤5,a∈Z}用列舉法表示為{1,2,3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.定義在[-4,4]上的奇函數(shù)f(x),已知當(dāng)x∈[-4,0]時,f(x)=$\frac{1}{4^x}$+$\frac{a}{3^x}$(a∈R).
(1)求f(x)在[0,4]上的解析式;
(2)若x∈[-2,-1]時,不等式f(x)≤$\frac{m}{2^x}$-$\frac{1}{{{3^{x-1}}}}$恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=cos(2x-$\frac{π}{3}$)-cos2x.
(Ⅰ)求f($\frac{π}{3}$)的值;
(Ⅱ)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.計(jì)算lg2-lg$\frac{1}{4}$+3lg5=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.A,B,C三個學(xué)生參加了一次考試,A,B的得分均為70分,C的得分均為65分,已知命題p:若及格分低于70分,則A,B,C都沒有及格,在下列四個命題中,為p的逆否命題的是(  )
A.若及格分不低于70分,則A,B,C都及格
B.若A,B,C都及格,則及格分不低于70分
C.若A,B,C至少有1人及格,則及格分不低于70分
D.若A,B,C至少有1人及格,則  及格分不高70于分

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.對于任意實(shí)數(shù)x,符號[x]表示不超過x的最大整數(shù),例如[2]=2;[2.1]=2;[-2.2]=-3.函數(shù)y=[x]叫做“取整函數(shù)”,它在數(shù)學(xué)本身和生產(chǎn)實(shí)踐中有廣泛的應(yīng)用.則[log31]+[log32]+[log33]+…+[log311]的值為12.

查看答案和解析>>

同步練習(xí)冊答案