13.已知函數(shù)f(x)=cos(ωx+$\frac{π}{4}}$)(ω>0)的最小正周期為π,為了得到函數(shù)g(x)=cosωx的圖象,只要將y=f(x)的圖象( 。
A.向左平移$\frac{π}{4}$個(gè)單位長(zhǎng)度B.向右平移$\frac{π}{4}$個(gè)單位長(zhǎng)度
C.向左平移$\frac{π}{8}$個(gè)單位長(zhǎng)度D.向右平移$\frac{π}{8}$個(gè)單位長(zhǎng)度

分析 由函數(shù)的周期求得ω=2,可得函數(shù)的解析式.再根據(jù)函數(shù)y=Asin(ωx+∅)的圖象變換規(guī)律,得出結(jié)論.

解答 解:已知函數(shù)f(x)=cos(ωx+$\frac{π}{4}}$)(ω>0)的最小正周期為π,
∴$\frac{2π}{ω}$=π,
∴ω=2,可得:g(x)=cos2x,
∴可得:f(x)=cos(2x+$\frac{π}{4}}$)=cos[2(x+$\frac{π}{8}$)],
∴為了得到函數(shù)g(x)=cos2x的圖象,
只要將y=f(x)的圖象向右平移$\frac{π}{8}$個(gè)單位即可.
故選:D.

點(diǎn)評(píng) 本題主要考查由函數(shù)y=Asin(ωx+)的部分圖象求解析式,函數(shù)y=Asin(ωx+∅)的圖象變換規(guī)律,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知集合A={1,2,3,4,5,6,7,8,9},B={x|x=n2,n∈A},則A∩B的子集共有( 。
A.16個(gè)B.8個(gè)C.4個(gè)D.2個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知{an},{bn}均為等差數(shù)列,它們的前n項(xiàng)和分別為Sn,Tn,若對(duì)任意n∈N*有$\frac{{S}_{n}}{{T}_{n}}$=$\frac{31n+101}{n+3}$,則使$\frac{{a}_{n}}{_{n}}$為整數(shù)的正整數(shù)n的集合為{1,3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.隨著人們生活水平的不斷提高,私家車(chē)已經(jīng)越來(lái)越多的進(jìn)入尋常百姓家,但隨之而來(lái)的祭車(chē)祭路行為也悄然成風(fēng),影響交通秩序,存在安全隱患,污染城鄉(xiāng)環(huán)境,影響城市形象.為凈化社會(huì)環(huán)境,推進(jìn)移風(fēng)易俗,提高社會(huì)文明程度,確保道路交通秩序和人民生命財(cái)產(chǎn)安全,某市決定在全市開(kāi)展祭車(chē)祭路整治活動(dòng),為此針對(duì)該市市民組織了一次隨機(jī)調(diào)查,下面是某次調(diào)查的結(jié)果.
支持不支持無(wú)所謂
男性480m180
女性24015090
現(xiàn)用分層抽樣的方法從上述問(wèn)卷中抽取50份問(wèn)卷,其中屬“支持”的問(wèn)卷有24份.
(Ⅰ)求m的值;
(Ⅱ)現(xiàn)決定從所調(diào)查的支持的720名市民中,仍用分層抽樣的方法隨機(jī)抽取6人進(jìn)行座談,再?gòu)?人中隨機(jī)抽取2人頒發(fā)幸運(yùn)禮品,試求這2人至少有1人是女性的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,已知下列各式,n∈N*,求通項(xiàng)公式an
(1)Sn=2n2+n;
(2)Sn=2n2+3n+1;
(3)an=5Sn+1;
(4)a1=1,an=2Sn(n≥2,n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.設(shè)M=5a2-a+1,N=4a2+a-1,則M,N的大小關(guān)系為M>N.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.(1+2x2)(x-$\frac{1}{x}$)8的展開(kāi)式中常數(shù)項(xiàng)為(  )
A.42B.-42C.24D.-24

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.下列命題:
①若$\overrightarrow{a}$∥$\overrightarrow$,$\overrightarrow$∥$\overrightarrow{c}$,則$\overrightarrow{a}$∥$\overrightarrow{c}$;
②若$\overrightarrow{a}$≠$\overrightarrow{0}$,且$\overrightarrow{a}$.$\overrightarrow$=$\overrightarrow{a}$•$\overrightarrow{c}$,則$\overrightarrow$=$\overrightarrow{c}$;
③若|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$-$\overrightarrow$|,則$\overrightarrow{a}$,$\overrightarrow$中至少有一個(gè)為$\overrightarrow{0}$;
④($\overrightarrow{a}$.$\overrightarrow$)$\overrightarrow{c}$=$\overrightarrow{a}$($\overrightarrow$.$\overrightarrow{c}$).
其中真命題的個(gè)數(shù)是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知tanα=-$\frac{3}{4}$,α∈($\frac{π}{2}$,π),求sinα,cosα的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案