(1+i)(1-i)表示為a+bi(a,b∈R),則a+b=________.

2
分析:根據(jù)復(fù)數(shù)代數(shù)形式的乘法運(yùn)算法則,我們可以將(1+i)(1-i)表示為a+bi(a,b∈R)的形式,進(jìn)而由復(fù)數(shù)相等的充要條件,構(gòu)造關(guān)于a,b的方程組,解方程組,求出a,b的值,進(jìn)而得到a+b的值.
解答:∵(1+i)(1-i)=1+1=2=a+bi
∴a=2,b=0
∴a+b=2
故答案為:2
點(diǎn)評:本題考查的知識(shí)點(diǎn)是復(fù)數(shù)相等的充要條件,復(fù)數(shù)代數(shù)形式的乘法運(yùn)算,其中根據(jù)復(fù)數(shù)相等的充要條件,構(gòu)造關(guān)于a,b的方程組,是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

18、某柑桔基地因冰雪災(zāi)害,使得果林嚴(yán)重受損,為此有關(guān)專家提出兩種拯救果林的方案,每種方案都需分兩年實(shí)施;若實(shí)施方案一,預(yù)計(jì)當(dāng)年可以使柑桔產(chǎn)量恢復(fù)到災(zāi)前的1.0倍、0.9倍、0.8倍的概率分別是0.3、0.3、0.4;第二年可以使柑桔產(chǎn)量為上一年產(chǎn)量的1.25倍、1.0倍的概率分別是0.5、0.5.若實(shí)施方案二,預(yù)計(jì)當(dāng)年可以使柑桔產(chǎn)量達(dá)到災(zāi)前的1.2倍、1.0倍、0.8倍的概率分別是0.2、0.3、0.5;第二年可以使柑桔產(chǎn)量為上一年產(chǎn)量的1.2倍、1.0倍的概率分別是0.4、0.6.實(shí)施每種方案,第二年與第一年相互獨(dú)立.令ξi(i=1,2)表示方案實(shí)施兩年后柑桔產(chǎn)量達(dá)到災(zāi)前產(chǎn)量的倍數(shù).
(1).寫出ξ1、ξ2的分布列;
(2).實(shí)施哪種方案,兩年后柑桔產(chǎn)量超過災(zāi)前產(chǎn)量的概率更大?
(3).不管哪種方案,如果實(shí)施兩年后柑桔產(chǎn)量達(dá)不到災(zāi)前產(chǎn)量,預(yù)計(jì)可帶來效益10萬元;兩年后柑桔產(chǎn)量恰好達(dá)到災(zāi)前產(chǎn)量,預(yù)計(jì)可帶來效益15萬元;柑桔產(chǎn)量超過災(zāi)前產(chǎn)量,預(yù)計(jì)可帶來效益20萬元;問實(shí)施哪種方案所帶來的平均效益更大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于數(shù)列A:a1,a2,…,an,若滿足ai∈{0,1}(i=1,2,3,…,n),則稱數(shù)列A為“0-1數(shù)列”.定義變換T,T將“0-1數(shù)列”A中原有的每個(gè)1都變成0,1,原有的每個(gè)0都變成1,0.例如A:1,0,1,則T(A):0,1,1,0,0,1.設(shè)A0是“0-1數(shù)列”,令A(yù)k=T(Ak-1),k=1,2,3,…
(Ⅰ) 若數(shù)列A2:1,0,0,1,0,1,1,0,1,0,0,1.求數(shù)列A1,A0
(Ⅱ) 若數(shù)列A0共有10項(xiàng),則數(shù)列A2中連續(xù)兩項(xiàng)相等的數(shù)對至少有多少對?請說明理由;
(Ⅲ)若A0為0,1,記數(shù)列Ak中連續(xù)兩項(xiàng)都是0的數(shù)對個(gè)數(shù)為lk,k=1,2,3,…求lk關(guān)于k的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解:因?yàn)橛胸?fù)根,所以在y軸左側(cè)有交點(diǎn),因此

解:因?yàn)楹瘮?shù)沒有零點(diǎn),所以方程無根,則函數(shù)y=x+|x-c|與y=2沒有交點(diǎn),由圖可知c>2


 13.證明:(1)令x=y=1,由已知可得f(1)=f(1×1)=f(1)f(1),所以f(1)=1或f(1)=0

若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)與已知條件“”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函數(shù)y=f(x)-1的零點(diǎn)

(2)因?yàn)閒(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,則f(-1)=f(1)與已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函數(shù)是奇函數(shù)

數(shù)字1,2,3,4恰好排成一排,如果數(shù)字i(i=1,2,3,4)恰好出現(xiàn)在第i個(gè)位置上則稱有一個(gè)巧合,求巧合數(shù)的分布列。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年北京市海淀區(qū)高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

對于數(shù)列A:a1,a2,…,an,若滿足ai∈{0,1}(i=1,2,3,…,n),則稱數(shù)列A為“0-1數(shù)列”.定義變換T,T將“0-1數(shù)列”A中原有的每個(gè)1都變成0,1,原有的每個(gè)0都變成1,0.例如A:1,0,1,則T(A):0,1,1,0,0,1.設(shè)A是“0-1數(shù)列”,令A(yù)k=T(Ak-1),k=1,2,3,…
(Ⅰ) 若數(shù)列A2:1,0,0,1,0,1,1,0,1,0,0,1.求數(shù)列A1,A;
(Ⅱ) 若數(shù)列A共有10項(xiàng),則數(shù)列A2中連續(xù)兩項(xiàng)相等的數(shù)對至少有多少對?請說明理由;
(Ⅲ)若A為0,1,記數(shù)列Ak中連續(xù)兩項(xiàng)都是0的數(shù)對個(gè)數(shù)為lk,k=1,2,3,…求lk關(guān)于k的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年北京市海淀區(qū)高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

對于數(shù)列A:a1,a2,…,an,若滿足ai∈{0,1}(i=1,2,3,…,n),則稱數(shù)列A為“0-1數(shù)列”.定義變換T,T將“0-1數(shù)列”A中原有的每個(gè)1都變成0,1,原有的每個(gè)0都變成1,0.例如A:1,0,1,則T(A):0,1,1,0,0,1.設(shè)A是“0-1數(shù)列”,令A(yù)k=T(Ak-1),k=1,2,3,…
(Ⅰ) 若數(shù)列A2:1,0,0,1,0,1,1,0,1,0,0,1.求數(shù)列A1,A;
(Ⅱ) 若數(shù)列A共有10項(xiàng),則數(shù)列A2中連續(xù)兩項(xiàng)相等的數(shù)對至少有多少對?請說明理由;
(Ⅲ)若A為0,1,記數(shù)列Ak中連續(xù)兩項(xiàng)都是0的數(shù)對個(gè)數(shù)為lk,k=1,2,3,…求lk關(guān)于k的表達(dá)式.

查看答案和解析>>

同步練習(xí)冊答案