(本題滿(mǎn)分12分)設(shè)橢圓C:(“a>b〉0)的左焦點(diǎn)為,橢圓過(guò)點(diǎn)P().(1)求橢圓C的方程;
(2)已知點(diǎn)D(1, 0),直線(xiàn)l:與橢圓C交于a、B兩點(diǎn),以DA和DB為鄰邊的四邊形是菱形,求k的取值范圍.
解 (1)由題意知,b2 = a2-3,由 得 2a4-11a2 + 12 = 0,
所以(a2-4)(2a2-3)= 0,得 a2 = 4或(舍去),
因此橢圓C的方程為. ……………… 4分
(2)由 得 .
所以4k2 + 1>0,,
得 4k2 + 1>m2. ① ……………… 6分
設(shè)A(x1,y1),B(x2,y2),AB中點(diǎn)為M(x0,y0),則,,
于是 ,,.
設(shè)菱形一條對(duì)角線(xiàn)的方程為,則有 x =-ky + 1.
將點(diǎn)M的坐標(biāo)代入,得 ,所以. ②
……………… 9分
將②代入①,得,
所以9k2>4k2 + 1,解得 k∈. ……………… 12分
法2
.直線(xiàn)l的方向向量為(1,k),則由菱形對(duì)角線(xiàn)互相垂直得,即,-3km = 4k2 + 1,, 代入①即得.
法3 設(shè)A(x1,y1),B(x2,y2),AB中點(diǎn)為M(x0,y0),則,,
于是,兩式相減可得 ,即 x0 + 4ky0 = 0. ①
因?yàn)?QD⊥AB,所以 . ②
由①②可解得 ,,表明點(diǎn)M的軌跡為線(xiàn)段().
當(dāng),k∈(,+∞);當(dāng),k∈(-∞,).
綜上,k的取值范圍是k∈.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2014屆吉林省吉林市高二上學(xué)期期中理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿(mǎn)分12分)
設(shè)命題:實(shí)數(shù)滿(mǎn)足, 命題:實(shí)數(shù)滿(mǎn)足.
當(dāng)為真,求實(shí)數(shù)的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年河北省石家莊市高三暑期第二次考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
(本題滿(mǎn)分12分)設(shè)函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若對(duì)恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年湖北省高三十一月份階段性考試?yán)砜茢?shù)學(xué) 題型:解答題
(本題滿(mǎn)分12分)設(shè)函數(shù),其中。
(Ⅰ)當(dāng)時(shí),求不等式的解集;
(Ⅱ)若不等式的解集為 ,求a的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆黑龍江省高一上學(xué)期期末考試?yán)砜茢?shù)學(xué) 題型:解答題
(本題滿(mǎn)分12分)
設(shè)向量
(1)若與垂直,求的值
(2)求的最大值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011年云南省高二上學(xué)期期末數(shù)學(xué)理卷 題型:解答題
(本題滿(mǎn)分12分)
設(shè),分別是橢圓:的左、右焦點(diǎn),過(guò)斜率為1的直線(xiàn)與相交于、兩點(diǎn),且,,成等差數(shù)列,
(Ⅰ)求的離心率;
(Ⅱ)設(shè)點(diǎn)滿(mǎn)足,求的方程。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com