【題目】已知函數(shù)且在上的最大值為,

1)求函數(shù)f(x)的解析式;

(2)判斷函數(shù)f(x)在(0π)內(nèi)的零點(diǎn)個(gè)數(shù),并加以證明

【答案】122個(gè)零點(diǎn).

【解析】

1)由題意,可借助導(dǎo)數(shù)研究函數(shù)上的單調(diào)性,確定出最值,令最值等于,即可得到關(guān)于a的方程,由于a的符號(hào)對(duì)函數(shù)的最值有影響,故可以對(duì)a的取值范圍進(jìn)行討論,分類求解;(2)借助導(dǎo)數(shù)研究函數(shù)fx)在(0π)內(nèi)單調(diào)性,由零點(diǎn)判定定理即可得出零點(diǎn)的個(gè)數(shù).

(1)由已知得f′(x)=a(sinx+xcosx),對(duì)于任意的x(0, )

sinx+xcosx>0,當(dāng)a=0時(shí),f(x)= ,不合題意;

當(dāng)a<0時(shí),x(0,),f′(x)<0,從而f(x)(0, )單調(diào)遞減,

又函數(shù)f(x)=axsinx (aR)[0, ]上圖象是連續(xù)不斷的,

故函數(shù)在[0, ]上的最大值為f(0),不合題意;

當(dāng)a>0時(shí),x(0, ),f′(x)>0,從而f(x)(0, )單調(diào)遞增,

又函數(shù)f(x)=axsinx (aR)[0, ]上圖象是連續(xù)不斷的,

故函數(shù)在[0, ]上上的最大值為f()=a=,解得a=1,

綜上所述,

(2)函數(shù)f(x)(0,π)內(nèi)有且僅有兩個(gè)零點(diǎn)。證明如下:

(I),f(x)=xsinx,從而有f(0)= <0,f()=π32>0

又函數(shù)在[0, ]上圖象是連續(xù)不斷的,所以函數(shù)f(x)(0, )內(nèi)至少存在一個(gè)零點(diǎn),

又由(I)f(x)(0, )單調(diào)遞增,故函數(shù)f(x)(0, )內(nèi)僅有一個(gè)零點(diǎn)。

當(dāng)x[,π]時(shí),g(x)=f′(x)=sinx+xcosx,

g()=1>0,g(π)=π<0,g(x)[,π]上的圖象是連續(xù)不斷的,

故存在m,π),使得g(m)=0.

g′(x)=2cosxxsinx,x(,π)時(shí),g′(x)<0,

從而g(x)[,π]上單調(diào)遞減。

當(dāng)x,m),g(x)>g(m)=0,f′(x)>0,

從而f(x)(,m)內(nèi)單調(diào)遞增

故當(dāng)x(,m)時(shí),f(x)>f(π2)=π32>0

從而(x)(,m)內(nèi)無零點(diǎn);

當(dāng)x(m,π)時(shí),g(x)<g(m)=0,f′(x)<0

從而f(x)(,m)內(nèi)單調(diào)遞減。

f(m)>0,f(π)<0f(x)[m,π]上的圖象是連續(xù)不斷的,

從而f(x)[m,π]內(nèi)有且僅有一個(gè)零點(diǎn)。

綜上所述,函數(shù)f(x)(0,π)內(nèi)有且僅有兩個(gè)零點(diǎn)。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在銳角ABC中,a2,_______,求ABC的周長(zhǎng)l的范圍.

在①(﹣cos,sin),(cos,sin),且,②cosA(2bc)=acosC,③f(x)=cosxcos(x),f(A)

注:這三個(gè)條件中任選一個(gè),補(bǔ)充在上面問題中并對(duì)其進(jìn)行求解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將含有甲、乙、丙的6名醫(yī)護(hù)人員平均分成兩組到A、B兩家醫(yī)院參加防疫救護(hù)工作,則甲、乙至少有一人在A醫(yī)院且甲、丙不在同一家醫(yī)院參加防疫救護(hù)工作的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠生產(chǎn)某種電子產(chǎn)品,每件產(chǎn)品合格的概率均為,現(xiàn)工廠為提高產(chǎn)品聲譽(yù),要求在交付用戶前每件產(chǎn)品都通過合格檢驗(yàn),已知該工廠的檢驗(yàn)儀器一次最多可檢驗(yàn)件該產(chǎn)品,且每件產(chǎn)品檢驗(yàn)合格與否相互獨(dú)立.若每件產(chǎn)品均檢驗(yàn)一次,所需檢驗(yàn)費(fèi)用較多,該工廠提出以下檢驗(yàn)方案:將產(chǎn)品每個(gè)()一組進(jìn)行分組檢驗(yàn),如果某一組產(chǎn)品檢驗(yàn)合格,則說明該組內(nèi)產(chǎn)品均合格,若檢驗(yàn)不合格,則說明該組內(nèi)有不合格產(chǎn)品,再對(duì)該組內(nèi)每一件產(chǎn)品單獨(dú)進(jìn)行檢驗(yàn),如此,每一組產(chǎn)品只需檢驗(yàn)一次或次.設(shè)該工廠生產(chǎn)件該產(chǎn)品,記每件產(chǎn)品的平均檢驗(yàn)次數(shù)為

1的分布列及其期望;

2)(i)試說明,當(dāng)越大時(shí),該方案越合理,即所需平均檢驗(yàn)次數(shù)越少;

ii)當(dāng)時(shí),求使該方案最合理時(shí)的值及件該產(chǎn)品的平均檢驗(yàn)次數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若存在非零實(shí)數(shù),使得點(diǎn)都在的圖象上,則實(shí)數(shù)的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是一位發(fā)燒病人的體溫記錄折線圖,下列說法不正確的是(

A.病人在51312時(shí)的體溫是

B.病人體溫在5140時(shí)到6時(shí)下降最快

C.從體溫上看,這個(gè)病人的病情在逐漸好轉(zhuǎn)

D.病人體溫在51518時(shí)開始逐漸穩(wěn)定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于函數(shù)有下述四個(gè)結(jié)論:

①函數(shù)的圖象把圓的面積兩等分

是周期為的函數(shù)

③函數(shù)在區(qū)間上有3個(gè)零點(diǎn)

④函數(shù)在區(qū)間上單調(diào)遞減

其中所有正確結(jié)論的編號(hào)是(

A.①③④B.②④C.①④D.①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】廠家在產(chǎn)品出廠前,需對(duì)產(chǎn)品做檢驗(yàn),廠家將一批產(chǎn)品發(fā)給商家時(shí),商家按合同規(guī)定也需隨機(jī)抽取一定數(shù)量的產(chǎn)品做檢驗(yàn),以決定是否接收這批產(chǎn)品.

1)若廠家?guī)旆恐校ㄒ暈閿?shù)量足夠多)的每件產(chǎn)品合格的概率為 從中任意取出 3件進(jìn)行檢驗(yàn),求至少有 件是合格品的概率;

2)若廠家發(fā)給商家 件產(chǎn)品,其中有不合格,按合同規(guī)定 商家從這 件產(chǎn)品中任取件,都進(jìn)行檢驗(yàn),只有 件都合格時(shí)才接收這批產(chǎn)品,否則拒收.求該商家可能檢驗(yàn)出的不合格產(chǎn)品的件數(shù)ξ的分布列,并求該商家拒收這批產(chǎn)品的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的左、右焦點(diǎn)分別是、,離心率,過點(diǎn)的直線交橢圓兩點(diǎn), 的周長(zhǎng)為16.

(1)求橢圓的方程;

(2)已知為原點(diǎn),圓 )與橢圓交于兩點(diǎn),點(diǎn)為橢圓上一動(dòng)點(diǎn),若直線、軸分別交于兩點(diǎn),求證: 為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案