精英家教網(wǎng)在四棱錐O-ABCD中,底面ABCD為菱形,OA⊥平面ABCD,E為OA的中點(diǎn),F(xiàn)為BC的中點(diǎn),求證:
(1)平面BDO⊥平面ACO;
(2)EF∥平面OCD.
分析:(1)證明平面BDO⊥平面ACO,只需證明平面BD0內(nèi)的直線(xiàn)BD,垂直平面ACO內(nèi)的兩條相交直線(xiàn)OA、AC即可;
(2)取OD中點(diǎn)M,連接KM、CM,證明EF平行平面OCD內(nèi)的直線(xiàn)CM,即可證明EF∥平面OCD.
解答:精英家教網(wǎng)證明:(1)∵OA⊥平面ABCD,BD?平面ABCD,所以O(shè)A⊥BD,
∵ABCD是菱形,∴AC⊥BD,又OA∩AC=A,
∴BD⊥平面OAC,
又∵BD?平面OBD,∴平面BD0⊥平面ACO.
(2)取OD中點(diǎn)M,連接KM、CM,則ME∥AD,ME=
1
2
AD

∵ABCD是菱形,∴AD∥BC,AD=BC,
∵F為BC的中點(diǎn),∴CF∥AD,CF=
1
2
AD
,
∴ME∥CF,ME=CF.
∴四邊形EFCM是平行四邊形,∴EF∥CM,
∴EF∥平面OCD
點(diǎn)評(píng):本題考查平面與平面垂直的判定,直線(xiàn)與平面平行的判定,考查空間想象能力,邏輯思維能力,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

16、如圖,在四棱錐O-ABCD中,AD∥BC,AB=AD=2BC,OB=OD,M是OD的中點(diǎn).
求證:(Ⅰ)直線(xiàn)MC∥平面OAB;
(Ⅱ)直線(xiàn)BD⊥直線(xiàn)OA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐O-ABCD中,底面ABCD是邊長(zhǎng)為2的菱形,∠ABC=60°,OA⊥底面ABCD,OA=2,M為OA的中點(diǎn),P為CD的中點(diǎn).
(1)求證:CD⊥平面MAP;
(2)求證:MP∥平面OBC;
(3)求三棱錐M-PAD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐O-ABCD中,底面ABCD是邊長(zhǎng)為1的菱形,∠ABC=
π4
,OA⊥底面ABCD,且OA=2,M為OA的中點(diǎn),N為BC的中點(diǎn).
(1)證明:直線(xiàn)MN∥平面OCD;
(2)求點(diǎn)N到平面OCD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•閘北區(qū)二模)如圖,在四棱錐O-ABCD中,底面ABCD是邊長(zhǎng)為2的正方形,OA⊥底面ABCD,OA=2,M為OA的中點(diǎn).
(Ⅰ)求四棱錐O-ABCD的體積;
(Ⅱ)求異面直線(xiàn)OB與MD所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在四棱錐O-ABCD中,底面ABCD四邊長(zhǎng)為1的菱形,∠ABC=
π4
,OA⊥底面ABCD,OA=2,M為OA的中點(diǎn),N為BC的中點(diǎn)
(1)求三棱錐B-OCD的體積;
(2)求異面直線(xiàn)AB與MD所成角的大;
注:若直線(xiàn)a⊥平面α,則直線(xiàn)a與平面α內(nèi)的所有直線(xiàn)都垂直.

查看答案和解析>>

同步練習(xí)冊(cè)答案