【題目】如圖,矩形中,為的中點(diǎn),將沿直線翻折成,連結(jié),為的中點(diǎn),則在翻折過(guò)程中,下列說(shuō)法中所有正確的是( )
A.存在某個(gè)位置,使得
B.翻折過(guò)程中,的長(zhǎng)是定值
C.若,則
D.若,當(dāng)三棱錐的體積最大時(shí),三棱錐的外接球的表面積是
【答案】BD
【解析】
對(duì)于選項(xiàng)A,取中點(diǎn),取中點(diǎn),連結(jié),,通過(guò)假設(shè),推出平面,得到,則,即可判斷;
對(duì)于選項(xiàng)B,在判斷A的圖基礎(chǔ)上,連結(jié)交于點(diǎn),連結(jié),易得,由余弦定理,求得為定值即可;
對(duì)于選項(xiàng)C,取中點(diǎn),,,由線面平行的性質(zhì)定理導(dǎo)出矛盾,即可判斷;
對(duì)于選項(xiàng)D,易知當(dāng)平面與平面垂直時(shí),三棱錐的體積最大,說(shuō)明此時(shí)中點(diǎn)為外接球球心即可.
如圖1,取中點(diǎn),取中點(diǎn),連結(jié)交于點(diǎn),連結(jié),,,
則易知,,,,,
由翻折可知,,,
對(duì)于選項(xiàng)A,易得,則、、、四點(diǎn)共面,由題可知,若,可得平面,故,則,不可能,故A錯(cuò)誤;
對(duì)于選項(xiàng)B,易得,
在中,由余弦定理得,
整理得,
故為定值,故B正確;
如圖2,取中點(diǎn),取中點(diǎn),連結(jié),,,,,
對(duì)于選項(xiàng)C,由得,若,易得平面,故有,從而,顯然不可能,故C錯(cuò)誤;
對(duì)于選項(xiàng)D,由題易知當(dāng)平面與平面垂直時(shí),三棱錐B1﹣AMD的體積最大,此時(shí)平面,則,由,易求得,,故,因此,為三棱錐的外接球球心,此外接球半徑為,表面積為,故D正確.
故選:BD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(12分)若數(shù)列{an}是的遞增等差數(shù)列,其中的a3=5,且a1,a2,a5成等比數(shù)列,
(1)求{an}的通項(xiàng)公式;
(2)設(shè)bn= ,求數(shù)列{bn}的前項(xiàng)的和Tn.
(3)是否存在自然數(shù)m,使得 <Tn<對(duì)一切n∈N*恒成立?若存在,求出m的值;
若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)=6cos2sinωx﹣3(ω>0)在一個(gè)周期內(nèi)的圖象如圖所示,A為圖象的最高點(diǎn),B,C為圖象與x軸的交點(diǎn),且△ABC為正三角形
(1)求ω的值及函數(shù)f(x)的表達(dá)式;
(2)若f(x0),且x0∈(),求f(x0+1)的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)(是自然對(duì)數(shù)的底數(shù))在的定義域上單調(diào)遞增,則稱(chēng)函數(shù)具有性質(zhì).下列函數(shù)中所有具有性質(zhì)的函數(shù)的序號(hào)為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】網(wǎng)購(gòu)是現(xiàn)在比較流行的一種購(gòu)物方式,現(xiàn)隨機(jī)調(diào)查50名個(gè)人收入不同的消費(fèi)者是否喜歡網(wǎng)購(gòu),調(diào)查結(jié)果表明:在喜歡網(wǎng)購(gòu)的25人中有18人是低收入的人,另外7人是高收入的人,在不喜歡網(wǎng)購(gòu)的25人中有6人是低收入的人,另外19人是高收入的人.
喜歡網(wǎng)購(gòu) | 不喜歡網(wǎng)購(gòu) | 總計(jì) | |
低收入的人 | |||
高收入的人 | |||
總計(jì) |
(Ⅰ)試根據(jù)以上數(shù)據(jù)完成列聯(lián)表,并用獨(dú)立性檢驗(yàn)的思想,指出有多大把握認(rèn)為是否喜歡網(wǎng)購(gòu)與個(gè)人收入高低有關(guān)系;
(Ⅱ)將5名喜歡網(wǎng)購(gòu)的消費(fèi)者編號(hào)為1、2、3、4、5,將5名不喜歡網(wǎng)購(gòu)的消費(fèi)者編號(hào)也記作1、2、3、4、5,從這兩組人中各任選一人進(jìn)行交流,求被選出的2人的編號(hào)之和為2的倍數(shù)的概率.
參考公式:
參考數(shù)據(jù):
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓,是它的上頂點(diǎn),點(diǎn)各不相同且均在橢圓上.
(1)若恰為橢圓長(zhǎng)軸的兩個(gè)端點(diǎn),求的面積;
(2)若,求證:直線過(guò)一定點(diǎn);
(3)若,的外接圓半徑為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(,為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線經(jīng)過(guò)點(diǎn),曲線的直角坐標(biāo)方程為.
(1)求曲線的普通方程,曲線的極坐標(biāo)方程;
(2)若,是曲線上兩點(diǎn),當(dāng)時(shí),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一種擲骰子走跳棋的游戲:棋盤(pán)上標(biāo)有第0站、第1站、第2站、…、第100站,共101站,設(shè)棋子跳到第n站的概率為,一枚棋子開(kāi)始在第0站,棋手每擲一次骰子,棋子向前跳動(dòng)一次.若擲出奇數(shù)點(diǎn),棋子向前跳一站;若擲出偶數(shù)點(diǎn),棋子向前跳兩站,直到棋子跳到第99站(獲勝)或第100站(失敗)時(shí),游戲結(jié)束(骰子是用一種均勻材料做成的立方體形狀的游戲玩具,它的六個(gè)面分別標(biāo)有點(diǎn)數(shù)1,2,3,4,5,6).
(1)求,,,并根據(jù)棋子跳到第n站的情況,試用和表示;
(2)求證:為等比數(shù)列;
(3)求玩該游戲獲勝的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論的導(dǎo)數(shù)的單調(diào)性;
(2)若有兩個(gè)極值點(diǎn),,求實(shí)數(shù)的取值范圍,并證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com