設(shè)數(shù)列{}前n項(xiàng)和為Sn,則S1=    ,S2=    ,S3=    ,S4=    ,并由此猜想出Sn=   
【答案】分析:由已知,直接計(jì)算各項(xiàng),并進(jìn)行歸納推理即可.
解答:解:則S1==
S2=+=
S3=+=
S4=+=
由此猜想出Sn=
故答案為:
點(diǎn)評(píng):本題考查歸納推理,數(shù)字規(guī)律探求的能力.實(shí)際上可看作給出一個(gè)數(shù)列的前幾項(xiàng)寫出數(shù)列的通項(xiàng)公式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知公差不為0的等差數(shù)列{an}的首項(xiàng)a1為a(a∈R)設(shè)數(shù)列的前n項(xiàng)和為Sn,且
1
a1
,
1
a2
1
a4
成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式及Sn;
(Ⅱ)記An=
1
S1
+
1
S2
+
1
S3
+…+
1
Sn
,Bn=
1
a1
+
1
a2
+…+
1
a2n-1
,當(dāng)n≥2時(shí),試比較An與Bn的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知公差不為0的等差數(shù)列{an}的首項(xiàng)為4,設(shè)數(shù)列的前n項(xiàng)和為Sn,且
1
a1
,
1
a2
,
1
a4
成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式an及Sn;
(2)記An=
1
S1
+
1
S2
+
1
S3
+…+
1
Sn
,Bn=
1
a1
+
1
a2
+
1
a22
+…+
1
a2n-1
,當(dāng)n≥2時(shí),試比較An與Bn的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}前n項(xiàng)和為Sn,首項(xiàng)為x(x∈R),滿足Sn=nan-
n(n-1)2
,n∈N+
(1)求證:數(shù)列{an}為等差數(shù)列;
(2)求證:若數(shù)列{an}中存在三項(xiàng)構(gòu)成等比數(shù)列,則x為有理數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2014•瀘州一模)設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,且a3=6,S10=110.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{bn}前n項(xiàng)和為Tn,且Tn=1-(
2
2
)an
,令cn=anbn(n∈N*).求數(shù)列{cn}的前n項(xiàng)和Rn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,且a3=6,S10=110.設(shè)數(shù)列{bn}前n項(xiàng)和為Tn,且Tn=1-(
2
2
)an
,求數(shù)列{an}、{bn}的前n項(xiàng)和公式.

查看答案和解析>>

同步練習(xí)冊(cè)答案