考點(diǎn):數(shù)列的求和
專(zhuān)題:等差數(shù)列與等比數(shù)列
分析:(Ⅰ)a
1=S
1=a
1+2a
1-1,得
a1=.n≥2時(shí),a
n=S
n-S
n-1=
n2an-(n-1)2an-1,由此利用累乘法能求出
an=,從面求出S
n=
.
(Ⅱ)通過(guò)逐項(xiàng)比較和數(shù)學(xué)歸納法證明,推導(dǎo)出n=1時(shí),a
n=
;1<n≤4時(shí),a
n<
;當(dāng)n≥5時(shí),a
n>
.
解答:
解:(Ⅰ)∵數(shù)列{a
n}的前n項(xiàng)和為S
n,且S
n=n
2a
n+2a
1-1,其中n∈N
*.
∴a
1=S
1=a
1+2a
1-1,解得
a1=.
∴n≥2時(shí),S
n=n
2a
n,①
S
n-1=(n-1)
2a
n-1,②
①-②得:a
n=S
n-S
n-1=
n2an-(n-1)2an-1,
整理,得
=
,
∴
=,
=,
=,…,
=,
把上面各式相乘,得
=,
∴
an=.
∴S
n=n
2a
n+2a
1-1=
=
.
(Ⅱ)當(dāng)n=1時(shí),
an=,
=
,a
n=
,
當(dāng)n=2時(shí),a
n=
,
=
,a
n<
,
當(dāng)n=3時(shí),a
n=
,
=
,a
n<
,
當(dāng)n=4時(shí),
an=,
=
,a
n<
,
當(dāng)n=5時(shí),
an=,
=
,a
n>
,
∴當(dāng)n≥5時(shí),a
n>
.
下面用數(shù)學(xué)歸納法證明:
①當(dāng)n=5時(shí),
an=,
=
,a
n>
.
②假設(shè)n=k時(shí),成立,則
ak>,即
>,
∴2
k>k(k+1),
當(dāng)n=k+1時(shí),a
k+1=
,
∵(k+1)(k+2)=k(k+1)+2(k+1)<2
k+2(k+1)<2
k+1,
∴,a
k+1=
<
.
∴當(dāng)n≥5時(shí),a
n>
.
綜上:n=1時(shí),a
n=
;1<n≤4時(shí),a
n<
;當(dāng)n≥5時(shí),a
n>
.
點(diǎn)評(píng):本題考查數(shù)列的通面公式和前n項(xiàng)和公式的求法,考查兩個(gè)式子的大小的比較,解題時(shí)要注意數(shù)學(xué)歸納法的合理運(yùn)用.