【題目】設(shè)橢圓 + =1(a>b>0)的左、右焦點(diǎn)分別為F1、F2 , P是橢圓上一點(diǎn),|PF1|=λ|PF2|( ≤λ≤2),∠F1PF2= ,則橢圓離心率的取值范圍為(
A.(0, ]
B.[ , ]
C.[ , ]
D.[ ,1)

【答案】B
【解析】解:設(shè)F1(﹣c,0),F(xiàn)2(c,0),由橢圓的定義可得,|PF1|+|PF2|=2a,
可設(shè)|PF2|=t,可得|PF1|=λt,
即有(λ+1)t=2a①
由∠F1PF2= ,可得|PF1|2+|PF2|2=4c2 ,
即為(λ2+1)t2=4c2 , ②
由②÷①2 , 可得e2= ,
令m=λ+1,可得λ=m﹣1,
即有 = =2( 2+
≤λ≤2,可得 ≤m≤3,即 ,
則m=2時(shí),取得最小值 ;m= 或3時(shí),取得最大值
即有 ≤e2 ,解得 ≤e≤
故選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)f(x)對(duì)任意的x都有f(x+2)﹣f(x)=﹣4x+4,且f(0)=0.
(1)求函數(shù)f(x)的解析式;
(2)設(shè)函數(shù)g(x)=f(x)+m,(m∈R). ①若存在實(shí)數(shù)a,b(a<b),使得g(x)在區(qū)間[a,b]上為單調(diào)函數(shù),且g(x)取值范圍也為[a,b],求m的取值范圍;
②若函數(shù)g(x)的零點(diǎn)都是函數(shù)h(x)=f(f(x))+m的零點(diǎn),求h(x)的所有零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=( x﹣2x
(1)若f(x)= ,求x的值;
(2)若不等式f(2m﹣mcosθ)+f(﹣1﹣cosθ)<f(0)對(duì)所有θ∈[0, ]都成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某機(jī)械廠今年進(jìn)行了五次技能考核,其中甲、乙兩名技術(shù)骨干得分的平均分相等,成績(jī)統(tǒng)計(jì)情況如莖葉圖所示(其中a是0﹣9的某個(gè)整數(shù)

(1)若該廠決定從甲乙兩人中選派一人去參加技能培訓(xùn),從成績(jī)穩(wěn)定性角度考慮,你認(rèn)為誰(shuí)去比較合適?
(2)若從甲的成績(jī)中任取兩次成績(jī)作進(jìn)一步分析,在抽取的兩次成績(jī)中,求至少有一次成績(jī)?cè)冢?0,100]之間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)P是圓F1:(x+1)2+y2=16上任意一點(diǎn)(F1是圓心),點(diǎn)F2與點(diǎn)F1關(guān)于原點(diǎn)對(duì)稱(chēng).線段PF2的中垂線m分別與PF1、PF2交于M、N兩點(diǎn).
(1)求點(diǎn)M的軌跡C的方程;
(2)直線l經(jīng)過(guò)F2 , 與拋物線y2=4x交于A1 , A2兩點(diǎn),與C交于B1 , B2兩點(diǎn).當(dāng)以B1B2為直徑的圓經(jīng)過(guò)F1時(shí),求|A1A2|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC中,角A、B、C的對(duì)邊分別為a、b、c.已知(a+c)2﹣b2=3ac
(1)求角B;
(2)當(dāng)b=6,sinC=2sinA時(shí),求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】曲線C上的動(dòng)點(diǎn)M到定點(diǎn)F(1,0)的距離和它到定直線x=3的距離之比是1:
(1)求曲線C的方程;
(2)過(guò)點(diǎn)F(1,0)的直線l與C交于A,B兩點(diǎn),當(dāng)△ABO面積為 時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=log2x﹣3sin( x)零點(diǎn)的個(gè)數(shù)是(
A.2
B.3
C.4
D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)列{an}是公差d不為0的等差數(shù)列,a1=2,Sn為其前n項(xiàng)和.
(1)當(dāng)a3=6時(shí),若a1 , a3 , , …, 成等比數(shù)列(其中3<n1<n2<…<nk),求nk的表達(dá)式;
(2)是否存在合適的公差d,使得{an}的任意前3n項(xiàng)中,前n項(xiàng)的和與后n項(xiàng)的和的比值等于定常數(shù)?求出d,若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案