用數(shù)學(xué)歸納法證明下面的等式
12-22+32-42+…+(-1)n-1·n2=(-1)n-1·
解:(1)當(dāng)n=1時,左邊=12=1
右邊=(-1)0·
∴原等式成立。
(2)假設(shè)n=k(k∈N*,k≥1)時,等式成立,
即有12-22+32-42+…+(-1)k-1·k2=(-1)k-1·
那么,當(dāng)n=k+1時,則有
12-22+32-42+…+(-1)k-1·k2+(-1)k(k+1)2
=(-1)k-1·+(-1)k·(k+1)2


∴n=k+1時,等式也成立,
由(1)(2)得對任意n∈N*有
12-22+32-42+…+(-1)n-1·n2=(-1)n-1·
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

試判斷下面的證明過程是否正確:

用數(shù)學(xué)歸納法證明:

證明:(1)當(dāng)時,左邊=1,右邊=1

∴當(dāng)時命題成立.

(2)假設(shè)當(dāng)時命題成立,即

則當(dāng)時,需證

由于左端等式是一個以1為首項,公差為3,項數(shù)為的等差數(shù)列的前項和,其和為

式成立,即時,命題成立.根據(jù)(1)(2)可知,對一切,命題成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

試判斷下面的證明過程是否正確:

用數(shù)學(xué)歸納法證明:

證明:(1)當(dāng)時,左邊=1,右邊=1

∴當(dāng)時命題成立.

(2)假設(shè)當(dāng)時命題成立,即

則當(dāng)時,需證

由于左端等式是一個以1為首項,公差為3,項數(shù)為的等差數(shù)列的前項和,其和為

式成立,即時,命題成立.根據(jù)(1)(2)可知,對一切,命題成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆江西省高二下學(xué)期期中考試理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知,(其中

⑴求

⑵試比較的大小,并說明理由.

【解析】第一問中取,則;                         …………1分

對等式兩邊求導(dǎo),得

,則得到結(jié)論

第二問中,要比較的大小,即比較:的大小,歸納猜想可得結(jié)論當(dāng)時,;

當(dāng)時,

當(dāng)時,

猜想:當(dāng)時,運用數(shù)學(xué)歸納法證明即可。

解:⑴取,則;                         …………1分

對等式兩邊求導(dǎo),得,

,則。       …………4分

⑵要比較的大小,即比較:的大小,

當(dāng)時,;

當(dāng)時,;

當(dāng)時,;                              …………6分

猜想:當(dāng)時,,下面用數(shù)學(xué)歸納法證明:

由上述過程可知,時結(jié)論成立,

假設(shè)當(dāng)時結(jié)論成立,即

當(dāng)時,

時結(jié)論也成立,

∴當(dāng)時,成立。                          …………11分

綜上得,當(dāng)時,;

當(dāng)時,;

當(dāng)時, 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

試判斷下面的證明過程是否是用數(shù)學(xué)歸納法的證明?若不是,請寫出正確答案.

用數(shù)學(xué)歸納法證明:

1+4+7+…+(3n-2)=n(3n-1).

查看答案和解析>>

同步練習(xí)冊答案