【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,圓的方程為,直線的極坐標方程為.

(I )寫出的極坐標方程和的平面直角坐標方程;

(Ⅱ) 若直線的極坐標方程為,設的交點為的交點為的面積.

【答案】(Ⅰ)圓的極坐標方程為 的平面直角坐標方程為

(Ⅱ).

【解析】試題分析:(根據(jù), 即可得到的極坐標方程和的平面直角坐標方程;(分別將代入的極坐標方程 即可求出的面積.

試題解析:()直角坐標與極坐標互化公式為, ,

∵圓的普通方程為,

∴把代入方程得, ,

的極坐標方程為 的平面直角坐標方程為;

)分別將代入的極坐標方程得; , .

的面積為

的面積為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某理財公司有兩種理財產(chǎn)品AB,這兩種理財產(chǎn)品一年后盈虧的情況如下(每種理財產(chǎn)品的不同投資結(jié)果之間相互獨立):

產(chǎn)品A

投資結(jié)果

獲利40%

不賠不賺

虧損20%

概率

產(chǎn)品B

投資結(jié)果

獲利20%

不賠不賺

虧損10%

概率

p

q

注:p>0,q>0

(1)已知甲、乙兩人分別選擇了產(chǎn)品A和產(chǎn)品B投資,如果一年后他們中至少有一人獲利的概率大于,求實數(shù)p的取值范圍;

(2)若丙要將家中閑置的10萬元人民幣進行投資,以一年后投資收益的期望值為決策依據(jù),則選用哪種產(chǎn)品投資較理想?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某農(nóng)產(chǎn)品從51日起開始上市,通過市場調(diào)查,得到該農(nóng)產(chǎn)品種植成本Q(單位:元/)與上市時間t(單位:天)的數(shù)據(jù)如下表:

t

50

110

250

Q

150

108

150

1)根據(jù)上表數(shù)據(jù),從下列函數(shù)中選取一個函數(shù)描述該農(nóng)產(chǎn)品種植成本Q與上市時間t的變化關系,并求出函數(shù)關系式:,,,.

2)利用你選取的函數(shù),求該農(nóng)產(chǎn)品種植成本最低時的上市時間及最低種植成本.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商品促銷活動設計了一個摸獎游戲:在一個口袋中裝有4個紅球和6個白球,這些球除顏色外完全相同,顧客一次從中摸出3個球,若3個都是白球則無獎勵,若有1個紅球則獎勵10元購物券,若有2個紅球則獎勵20元購物券,若3個都是紅球則獎勵30元購物券.

(Ⅰ)求中獎的概率;

(Ⅱ)求顧客摸獎一次獲得購物券獎勵的平均值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在①;這兩個條件中任選-一個,補充在下面問題中,然后解答補充完整的題.

中,角的對邊分別為,已知 ,.

(1);

(2)如圖,為邊上一點,,求的面積

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】求下列函數(shù)的單調(diào)區(qū)間.

1fx)=3|x|;

2fx)=|x22x3|

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設奇函數(shù)上是增函數(shù),且,則不等式的解集為( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(原創(chuàng)題)已知點是橢圓和拋物線 的公共焦點, 是橢圓的長軸的兩個端點,點 在第二象限的交點,且.

(I) 求橢圓 的方程;

(II) 為直線上的動點,過點作拋物線的兩條切線,切點分別為.直線交橢圓 兩點,設△的面積為,的面積為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】命題p:實數(shù)x滿足,命題:實數(shù)x滿足

(1)若,且為真,求實數(shù)的取值范圍;

(2)若,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案