設(shè)AM是△ABC的邊BC上的中線,若=a,=b,則等于(    )

A.a-b              B.b-a            C.a+b             D.a+b

解析:如圖,∵=b,M是BC的中點,

=b,

=a+b.∴應(yīng)選D.

答案:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)在平面向量中有如下定理:設(shè)點O、P、Q、R為同一平面內(nèi)的點,則P、Q、R三點共線的充要條件是:存在實數(shù)t,使
OP
=(1-t)
OQ
+t
OR
.試?yán)迷摱ɡ斫獯鹣铝袉栴}:
如圖,在△ABC中,點E為AB邊的中點,點F在AC邊上,且CF=2FA,BF交CE于點M,設(shè)
AM
=x
AE
+y
AF
,則x+2y=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)正△ABC邊長為2a,點M是邊AB上自左至右的一個動點,過點M的直線l垂直與AB,設(shè)AM=x,△ABC內(nèi)位于直線l左側(cè)的陰影面積為y,y表示成x的函數(shù)表達(dá)式為
y=
3
2
x2(0<x≤a)
-
3
2
x2+2
3
ax-
3
a2(a<x≤2a)
y=
3
2
x2(0<x≤a)
-
3
2
x2+2
3
ax-
3
a2(a<x≤2a)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C過定點A(0,a)(a>0),且在x軸上截得的弦MN的長為2a.
(1)求圓C的圓心的軌跡方程;
(2)設(shè)|AM|=m,|AN|=n,求
m
n
+
n
m
的最大值及此時圓C的方程.△ABC中,a,b,c是內(nèi)角A,B,C的對邊,且lgsinA,lgsinB,lgsinC成等差數(shù)列,則下列兩條直線l1:(sin2A)x+(sinA)y-a=0,l2:(sin2B)x+(sinC)y-c=0的位置關(guān)系是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•江蘇二模)在三角形ABC中,過中線AD中點E任作一直線分別交邊AB,AC與M、N兩點,設(shè)
AM
=x
AB
,
AN
=y
AC
,(xy≠0)
則4x+y的最小值是
9
4
9
4

查看答案和解析>>

同步練習(xí)冊答案