下列四個條件中,p是q的充要條件條件的是
 

①p:a>b,q:a2>b2; ②p:a>b,q:2a>2b
③p:ax2+by2=c為雙曲線,q:ab<0;④p:ax2+bx+c>0,q:
c
x2
-
b
x
+a>0

⑤p:m<-2或m>6;q:y=x2+mx+m+3有兩個不同的零點.
考點:必要條件、充分條件與充要條件的判斷
專題:簡易邏輯
分析:根據(jù)充分條件和必要條件的定義分別進行判斷即可.
解答: 解:①若a=1,b=0,滿足a>b,但a2>b2;不成立,即p不是q的充要條件;
②由2a>2b得a>b,即p是q的充要條件;
③若c=0,若ab<0,此時ax2+by2=c不是雙曲線,即p不是q的是充要條件,
④若x=0,c>0時,ax2+bx+c>0成立,但q:
c
x2
-
b
x
+a>0
不成立,故p不是q的是充要條件,
⑤若y=x2+mx+m+3有兩個不同的零點,則判別式△=m2-4(m+3)>0,解得m<-2或m>6,故p是q的充要條件,
故答案為:②⑤
點評:本題主要考查充分條件和必要條件的判斷,根據(jù)充分條件和必要條件的定義是解決本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

下列選項錯誤的是(  )
A、命題“?x0∈R,x02+3x0+6≤0”的否定是“?x∈R,x2+3x+6>0“
B、命題“所有的等邊三角形都是等腰三角形”的否定是“有一個等邊三角形不是等腰三角形”
C、命題“若|x|>0,則x2>0”的逆命題是“若x2>0,則|x|>0”
D、命題“若x>0,則x2>0”的否命題是“若x>0,則x2≤0”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

證明:
a+b
sinA+sinB
=
a
sinA

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算:
(1)0.064-
1
3
-(-
7
6
)0+(
8
27
)
2
3
(1
7
9
)-0.5
;
(2)log49•log2732+(lg2)2+2lg2lg5+(lg5)2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若等差數(shù)列{an}中,已知a1=
1
3
,a2+a5=4,an=35,則n=( 。
A、50B、51C、52D、53

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

復(fù)數(shù)z1=3+4i,z2=1-i,z3=c+(c-2)i(其中i為虛數(shù)單位)在復(fù)平面內(nèi)對應(yīng)的點分別為A、B、C.
(1)若∠BAC是銳角,求實數(shù)c的取值范圍;
(2)若復(fù)數(shù)z滿足|z-z1|=1,求|z-z2|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=α(cos2x+sinxcosx)+b
(1)當a>0時,求f(x)的最小正周期和單調(diào)遞減區(qū)間
(2)當a<0且x∈[0,
π
2
],f(x)的值域是[3,4],求a,b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x2-3x+2>0的解集為P,關(guān)于不等式(x-1)(x+a)>0的解集為q,已知p是q的充分不必要條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=f′(
π
4
)cosx+sinx,則f′(
π
4
)的值為
 

查看答案和解析>>

同步練習冊答案