如圖,把橢圓的長軸分成等份,過每個分點(diǎn)作軸的垂線交橢圓的上半部分于七個點(diǎn),是橢圓的一個焦點(diǎn),則(   ).
A.50B.35C.32D.41
B
解:不妨設(shè)P點(diǎn)是橢圓上的任意點(diǎn)則由橢圓的第二定義可得:|PF| a2 c - x =" c" a 又a=5,b=4,c=" a2-" b2 =3故|PF|="5-3" 5 x
∵把橢圓x2 25 +y2 16 =1的長軸AB分成8等份,過每個分點(diǎn)作x軸的垂線交橢圓的上半部分于P1,P2,P3,P4,P5,P6,P7七個點(diǎn)
∴p4點(diǎn)為橢圓與Y軸正半軸的交點(diǎn)且P1,P2,P3與P5,P6,P7分別關(guān)于Y軸對稱
∴不妨設(shè)p1(x1,y1),p2(x2,y2),p3(x3,y3)且x1<0,x2<0,x3<0,p4(0,4)
∴p5(-x3,y3),p6(-x2,y2),p7(-x1,y1)
∴由①可得|P1F|+|P2F|+|P3F|+|P4F|+|P5F|+|P6F|+|P7F|=(5-3 5 x1)+(5-3 5 x2)+(5-3 5 x3)+(5-3 5 ×0)+ (5+3 5 x3)+(5+3 5 x2)+(5+3 5 x1)
∴|P1F|+|P2F|+|P3F|+|P4F|+|P5F|+|P6F|+|P7F|=5×7=35
故答案選B
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題共13分)已知橢圓的右焦點(diǎn)為,為橢圓的上頂點(diǎn),為坐標(biāo)原點(diǎn),且△是等腰直角三角形.
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存在直線交橢圓于,兩點(diǎn), 且使點(diǎn)為△的垂心(垂心:三角形三邊高線的交點(diǎn))?若存在,求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

.(本小題滿分13分)
P為橢圓上任意一點(diǎn),為左、右焦點(diǎn),如圖所示.
(1)若的中點(diǎn)為,求證:
(2)若∠,求|PF1|·|PF2|之值;
(3)橢圓上是否存在點(diǎn)P,使·=0,若存在,求出P點(diǎn)的坐標(biāo),若不存在,試說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知是橢圓上的點(diǎn),以為圓心的圓與軸相切于橢
圓的焦點(diǎn),圓軸相交于兩點(diǎn).若為銳角三角形,則橢圓的離心率
的取值范圍為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,已知焦距為4的橢圓的左、右頂點(diǎn)分別為,橢圓的右焦點(diǎn)為,過作一條垂直于軸的直線與橢圓相交于,若線段的長為。
(1)求橢圓的方程;
(2)設(shè)是直線上的點(diǎn),直線與橢圓分別交于點(diǎn),求證:直線必過軸上的一定點(diǎn),并求出此定點(diǎn)的坐標(biāo);

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C:+=1(a>b>0),直線y=x+與以原點(diǎn)為圓心,以橢圓C的短半軸長為半徑的圓相切,F(xiàn)1,F(xiàn)2為其左、右焦點(diǎn),P為橢圓C上任一點(diǎn),△F1PF2的重心為G,內(nèi)心為I,且IG∥F1F2。⑴求橢圓C的方程。⑵若直線L:y=kx+m(k≠0)與橢圓C交于不同兩點(diǎn)A,B且線段AB的垂直平分線過定點(diǎn)C(,0)求實數(shù)k的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

橢圓的離心率,右焦點(diǎn)到直線的距離為,過的直線交橢圓于兩點(diǎn).(Ⅰ) 求橢圓的方程;(Ⅱ) 若直線軸于,,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓的焦點(diǎn)為、,點(diǎn)在橢圓上,若,則___.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

.(本題14分)過點(diǎn)的橢圓)的離心率為,橢圓與軸的交于兩點(diǎn),),,),過點(diǎn)的直線與橢圓交于另一點(diǎn),并與軸交于點(diǎn),直線與直線叫與點(diǎn)
(I)當(dāng)直線過橢圓右交點(diǎn)時,求線段的長;
(II)當(dāng)點(diǎn)異于兩點(diǎn)時,求證:為定值.

查看答案和解析>>

同步練習(xí)冊答案