設(shè)函數(shù),則函數(shù)的導(dǎo)數(shù) ( )

A.                          B.

C.                          D.

 

【答案】

B

【解析】

試題分析:  

考點(diǎn):基本函數(shù)求導(dǎo)數(shù)

點(diǎn)評(píng):函數(shù)求導(dǎo)公式, 需熟記

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)的導(dǎo)數(shù)為0的點(diǎn)稱為函數(shù)的駐點(diǎn),若點(diǎn)(1,1)為函數(shù)f(x)的駐點(diǎn),則稱f(x)具有“1-1駐點(diǎn)性”.
(1)設(shè)函數(shù)f(x)=-x+2
x
+alnx,其中a≠0.
①求證:函數(shù)f(x)不具有“1-1駐點(diǎn)性”
②求函數(shù)f(x)的單調(diào)區(qū)間
(2)已知函數(shù)g(x)=bx3+3x2+cx+2具有“1-1駐點(diǎn)性”,給定x1,x2∈R,x1<x2,設(shè)λ為實(shí)數(shù),且λ≠-1,α=
x1+λx2
1+λ
,β=
x2+λx1
1+λ
,若|g(α)-g(β)|>|g(x1)-g(x2)|,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義:設(shè)函數(shù)y=f(x)在(a,b)內(nèi)可導(dǎo),f'(x)為f(x)的導(dǎo)數(shù),f''(x)為f'(x)的導(dǎo)數(shù)即f(x)的二階導(dǎo)數(shù),若函數(shù)y=f(x) 在(a,b)內(nèi)的二階導(dǎo)數(shù)恒大于等于0,則稱函數(shù)y=f(x)是(a,b)內(nèi)的下凸函數(shù)(有時(shí)亦稱為凹函數(shù)).已知函數(shù)f(x)=xlnx
(1)證明函數(shù)f(x)=xlnx是定義域內(nèi)的下凸函數(shù),并在所給直角坐標(biāo)系中畫出函數(shù)f(x)=xlnx的圖象;
(2)對(duì)?x1,x2∈R+,根據(jù)所畫下凸函數(shù)f(x)=xlnx圖象特征指出x1lnx1+x2lnx2≥(x1+x2)[ln(x1+x2)-ln2]與x1lnx1+x2lnx2≥(x1+x2)[ln(x1+x2)-ln2]的大小關(guān)系;
(3)當(dāng)n為正整數(shù)時(shí),定義函數(shù)N (n)表示n的最大奇因數(shù).如N (3)=3,N (10)=5,….記S(n)=N(1)+N(2)+…+N(2n),若
2n
i=1
xi=1
,證明:
2n
i=1
xilnxi≥-ln2n
ln
1
3S(n)-2
(i,n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年海南省瓊海市高三下學(xué)期第一次月考理科數(shù)學(xué)試卷(解析版) 題型:填空題

對(duì)于三次函數(shù)給出定義:設(shè)是函數(shù)的導(dǎo)數(shù),是函數(shù)的導(dǎo)數(shù),若方程有實(shí)數(shù)解,則稱點(diǎn)為函數(shù)的“拐點(diǎn)”,某同學(xué)經(jīng)過探究發(fā)現(xiàn):任何一個(gè)三次函數(shù)都有“拐點(diǎn)”;任何一個(gè)三次函數(shù)都有對(duì)稱中心,且“拐點(diǎn)”就是對(duì)稱中心。給定函數(shù),請(qǐng)你根據(jù)上面探究結(jié)果,計(jì)算            

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖北省黃岡市高三上學(xué)期期末考試文科數(shù)學(xué) 題型:填空題

對(duì)于三次函數(shù),給出定義:設(shè)是函數(shù)的導(dǎo)數(shù),的導(dǎo)數(shù),若方程有實(shí)數(shù)解,則稱點(diǎn)為函數(shù)的“拐點(diǎn)”。某同學(xué)經(jīng)過探究發(fā)現(xiàn):任何一個(gè)三次函數(shù)都有“拐點(diǎn)”;任何一個(gè)三次函數(shù)都有對(duì)稱中心,且“拐點(diǎn)”就是對(duì)稱中心。若,請(qǐng)你根據(jù)這一發(fā)現(xiàn),求:

       (1)函數(shù)對(duì)稱中心為       ;

       (2)計(jì)算=         。

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案