分析 (1)利用二倍角以及輔助角公式基本公式將函數(shù)化為y=Asin(ωx+φ)的形式,再利用周期公式求函數(shù)的最小正周期;將內(nèi)層函數(shù)看作整體,放到正弦函數(shù)的增區(qū)間上,解不等式得函數(shù)的單調(diào)遞增區(qū)間;
(2)x∈$[{-\frac{π}{4},\frac{π}{2}}]$上時(shí),求出內(nèi)層函數(shù)的取值范圍,結(jié)合三角函數(shù)的圖象和性質(zhì),求出f(x)的最大值和最小值.
解答 解:函數(shù)$f(x)=cosx(sinx+cosx)-\frac{1}{2}$.
化解可得:f(x)sinxcosx+cos2x-$\frac{1}{2}$=$\frac{1}{2}$sin2x+$\frac{1}{2}$cos2x=$\frac{\sqrt{2}}{2}$sin(2x+$\frac{π}{4}$)
(1)函數(shù)f(x)的最小正周期T=$\frac{2π}{2}=π$;
由$-\frac{π}{2}+2kπ≤$2x+$\frac{π}{4}$$≤\frac{π}{2}+2kπ$,k∈Z.
可得:-$\frac{3π}{8}+kπ≤$x$≤\frac{π}{8}+kπ$
∴函數(shù)f(x)的單調(diào)遞增區(qū)間為[-$\frac{3π}{8}+kπ$,$\frac{π}{8}+kπ$]k∈Z.
(2)∵x∈$[{-\frac{π}{4},\frac{π}{2}}]$上時(shí),可得:-$\frac{π}{4}$≤2x+$\frac{π}{4}$$≤\frac{5π}{4}$,
∴sin(2x+$\frac{π}{4}$)∈[-$\frac{\sqrt{2}}{2}$,1]
故得函數(shù)f(x)的最大值為$\frac{\sqrt{2}}{2}$,最小值為$-\frac{1}{2}$.
點(diǎn)評(píng) 本題主要考查對(duì)三角函數(shù)的化簡(jiǎn)能力和三角函數(shù)的圖象和性質(zhì)的運(yùn)用,利用三角函數(shù)公式將函數(shù)進(jìn)行化簡(jiǎn)是解決本題的關(guān)鍵.屬于基礎(chǔ)題
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $(-\frac{1}{4},+∞)$ | B. | $(-\frac{1}{2},0)$ | C. | (-1,0) | D. | $(-\frac{1}{4},0)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
137 | 966 | 191 | 925 | 271 | 932 | 812 | 458 | 569 | 683 |
431 | 257 | 393 | 027 | 556 | 488 | 730 | 113 | 537 | 989 |
A. | 0.40 | B. | 0.30 | C. | 0.35 | D. | 0.25 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com