已知曲線C上的動(dòng)點(diǎn)P()滿足到定點(diǎn)A(-1,0)的距離與到定點(diǎn)B(1,0)距離之比為
(1)求曲線C的方程。
(2)過(guò)點(diǎn)M(1,2)的直線與曲線C交于兩點(diǎn)M、N,若|MN|=4,求直線的方程。

(1):(或);(2)

解析試題分析:(1)根據(jù)動(dòng)點(diǎn)P(x,y)滿足到定點(diǎn)A(-1,0)的距離與到定點(diǎn)B(1,0)距離之比為,建立方程,化簡(jiǎn)可得曲線C的方程.
(2)分類討論,設(shè)出直線方程,求出圓心到直線的距離,利用勾股定理,即可求得直線l的方程.
試題解析:(1)由題意得|PA|=|PB|                              2分;
                    3分;
化簡(jiǎn)得:(或)即為所求。  5分;
(2)當(dāng)直線的斜率不存在時(shí),直線的方程為,
代入方程,
所以|MN|=4,滿足題意。                                 8分;
當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為+2
由圓心到直線的距離                    10分;
解得,此時(shí)直線的方程為
綜上所述,滿足題意的直線的方程為:.     12分.
考點(diǎn):(1)圓的標(biāo)準(zhǔn)方程;(2)點(diǎn)到直線的距離公式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,四邊形為邊長(zhǎng)為a的正方形,以D為圓心,DA為半徑的圓弧與以BC為直徑的圓O交于F,連接CF并延長(zhǎng)交AB于點(diǎn)E.
 
(1).求證:E為AB的中點(diǎn);
(2).求線段FB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知F1,F2分別是橢圓E:+y2=1的左、右焦點(diǎn),F1,F2關(guān)于直線x+y-2=0的對(duì)稱點(diǎn)是圓C的一條直徑的兩個(gè)端點(diǎn).
(1)求圓C的方程;
(2)設(shè)過(guò)點(diǎn)F2的直線l被橢圓E和圓C所截得的弦長(zhǎng)分別為a,b.當(dāng)ab最大時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,過(guò)圓O外一點(diǎn)M作它的一條切線,切點(diǎn)為A,過(guò)A點(diǎn)作直線AP垂直直線OM,垂足為P.

(1)證明:OM·OP=OA2;
(2)N為線段AP上一點(diǎn),直線NB垂直直線ON,且交圓O于B點(diǎn).過(guò)B點(diǎn)的切線交直線ON于K.證明:∠OKM=90°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,橢圓C=1(a>b>0)的離心率為,以坐標(biāo)原點(diǎn)為圓心,橢圓C的短半軸長(zhǎng)為半徑的圓與直線xy+2=0相切.

(1)求橢圓C的方程;
(2)已知點(diǎn)P(0,1),Q(0,2),設(shè)M,N是橢圓C上關(guān)于y軸對(duì)稱的不同兩點(diǎn),直線PMQN相交于點(diǎn)T.求證:點(diǎn)T在橢圓C上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(1)求圓心在軸上,且與直線相切于點(diǎn)的圓的方程;
(2)已知圓過(guò)點(diǎn),且與圓關(guān)于直線對(duì)稱,求圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知點(diǎn)A(-3,0),B(3,0),動(dòng)點(diǎn)P滿足|PA|=2|PB|.
(1)若點(diǎn)P的軌跡為曲線C,求此曲線的方程;
(2)若點(diǎn)Q在直線l1xy+3=0上,直線l2經(jīng)過(guò)點(diǎn)Q且與曲線C只有一個(gè)公共點(diǎn)M,求|QM|的最小值.?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知圓經(jīng)過(guò)點(diǎn),且圓心在直線上.
(1)求圓的方程;
(2)若點(diǎn)為圓上任意一點(diǎn),求點(diǎn)到直線的距離的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知圓問(wèn)在圓C上是否存在兩點(diǎn)A,B關(guān)于直線對(duì)稱,且以AB為直徑的圓經(jīng)過(guò)原點(diǎn)?若存在,寫出直線AB的方程,若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案