已知平面向量
a
=(sinθ,1),
b
=(-
3
,cosθ),若
a
b
,則θ可以為( 。
A、θ=
π
6
B、θ=
6
C、θ=
π
3
D、θ=
3
分析:利用向量垂直的充要條件:數(shù)量積為0,再利用向量的數(shù)量積公式列出方程,求出角的集合,選出選項(xiàng).
解答:解:∵
a
b

a
b
=0

-
3
sinθ+cosθ=0

tanθ=
3
3

θ=kπ+
π
6

當(dāng)k=0時(shí),θ=
π
6

故選A.
點(diǎn)評:本題考查向量垂直的充要條件:向量的數(shù)量積為0;向量數(shù)量積的公式:對應(yīng)坐標(biāo)乘積的和.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知平面向量
a
=(
3
2
,
1
2
),
b
=(
1
2
,
3
2
).
(1)證明:
a
b

(2)若存在不同時(shí)為零的實(shí)數(shù)k和t,使
x
=
a
+(t2-k)
b
y
=-s
a
+t
b
,且
x
y
,試求s=f(t)的函數(shù)關(guān)系式;
(3)若s=f(t)在[1,+∞)上是增函數(shù),試求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•上海)定義向量
OM
=(a,b)的“相伴函數(shù)”為f(x)=asinx+bcosx,函數(shù)f(x)=asinx+bcosx的“相伴向量”為
OM
=(a,b)(其中O為坐標(biāo)原點(diǎn)).記平面內(nèi)所有向量的“相伴函數(shù)”構(gòu)成的集合為S.
(1)設(shè)g(x)=3sin(x+
π
2
)+4sinx,求證:g(x)∈S;
(2)已知h(x)=cos(x+α)+2cosx,且h(x)∈S,求其“相伴向量”的模;
(3)已知M(a,b)(b≠0)為圓C:(x-2)2+y2=1上一點(diǎn),向量
OM
的“相伴函數(shù)”f(x)在x=x0處取得最大值.當(dāng)點(diǎn)M在圓C上運(yùn)動(dòng)時(shí),求tan2x0的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知平面向量
a
=(
3
2
,
1
2
),
b
=(
1
2
3
2
).
(1)證明:
a
b
;
(2)若存在不同時(shí)為零的實(shí)數(shù)k和t,使
x
=
a
+(t2-k)
b
y
=-s
a
+t
b
,且
x
y
,試求s=f(t)的函數(shù)關(guān)系式;
(3)若s=f(t)在[1,+∞)上是增函數(shù),試求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:高考真題 題型:解答題

定義向量=(a,b)的“相伴函數(shù)”為f(x)=asinx+bcosx,函數(shù)f(x)=asinx+bcosx的“相伴向量”為=(a,b)(其中O為坐標(biāo)原點(diǎn)),記平面內(nèi)所有向量的“相伴函數(shù)”構(gòu)成的集合為S。
(1)設(shè)g(x)=3sin(x+)+4sinx,求證:g(x)∈S;
(2)已知h(x)=cos(x+α)+2cosx,且h(x)∈S,求其“相伴向量”的模;
(3)已知M(a,b)(b≠0)為圓C:(x-2)2+y2=1上一點(diǎn),向量的“相伴函數(shù)”f(x)在x=x0處取得最大值,當(dāng)點(diǎn)M在圓C上運(yùn)動(dòng)時(shí),求tan2x0的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年上海市春季高考數(shù)學(xué)試卷(解析版) 題型:解答題

定義向量=(a,b)的“相伴函數(shù)”為f(x)=asinx+bcosx,函數(shù)f(x)=asinx+bcosx的“相伴向量”為=(a,b)(其中O為坐標(biāo)原點(diǎn)).記平面內(nèi)所有向量的“相伴函數(shù)”構(gòu)成的集合為S.
(1)設(shè)g(x)=3sin(x+)+4sinx,求證:g(x)∈S;
(2)已知h(x)=cos(x+α)+2cosx,且h(x)∈S,求其“相伴向量”的模;
(3)已知M(a,b)(b≠0)為圓C:(x-2)2+y2=1上一點(diǎn),向量的“相伴函數(shù)”f(x)在x=x處取得最大值.當(dāng)點(diǎn)M在圓C上運(yùn)動(dòng)時(shí),求tan2x的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案