精英家教網 > 高中數學 > 題目詳情

已知函數
(1)若函數的圖象切x軸于點(2,0),求a、b的值;
(2)設函數的圖象上任意一點的切線斜率為k,試求的充要條件;
(3)若函數的圖象上任意不同的兩點的連線的斜率小于l,求證

(1),;(2);(3)

解析試題分析:(1)由函數的圖象切x軸于點(2,0),得,解方程組可得的值.
(2)由于,根據導數的幾何意義,任意不同的兩點的連線的斜率小于l,對任意的恒成立,利用分離變量法,轉化為對任意的恒成立,進一步轉化為函數的最值問題;
(3)設,則
恒成立
將上不等式看成是關于的一元二次不等式即可.
解:(1)
,得,
,得
(2)
對任意的,即對任意的恒成立
等價于對任意的恒成立


,當且僅當時“=”成立,
上為增函數,

(3)設,則
,對恒成立
,對恒成立
,對恒成立

解得
考點:1、導數的幾何意義;2、等價轉化的思想;3、二次函數與一元二次一不等式問題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

設函數.
(1)若曲線在點處與直線相切,求a,b的值;
(2)求函數的單調區(qū)間.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)試求函數的遞減區(qū)間;
(2)試求函數在區(qū)間上的最值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,曲線經過點
且在點處的切線為.
(1)求、的值;
(2)若存在實數,使得時,恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(1)若函數內單調遞增,求的取值范圍;
(2)若函數處取得極小值,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數 
(1)求函數處的切線的斜率;
(2)求函數的最大值;
(3)設,求函數上的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某風景區(qū)在一個直徑AB為100米的半圓形花園中設計一條觀光線路(如圖所示).在點A與圓
弧上的一點C之間設計為直線段小路,在路的兩側邊緣種植綠化帶;從點C到點B設計為沿弧的弧形小路,在路的一側邊緣種植綠化帶.(注:小路及綠化帶的寬度忽略不計)
(1)設(弧度),將綠化帶總長度表示為的函數;
(2)試確定的值,使得綠化帶總長度最大.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

,其中a∈R,曲線y=f(x)在點(1,f(1))處的切線與y軸相交于點(0,6).
(1)確定a的值;
(2)求函數f(x)的單調區(qū)間與極值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)若,求曲線處的切線方程;
(2)求的單調區(qū)間;
(3)設,若對任意,均存在,使得,求的取值范圍.

查看答案和解析>>

同步練習冊答案