已知,橢圓C以過(guò)點(diǎn)A(1,),兩個(gè)焦點(diǎn)為(-1,0)(1,0)。
求橢圓C的方程;
E,F是橢圓C上的兩個(gè)動(dòng)點(diǎn),如果直線AE的斜率與AF的斜率互為相反數(shù),證明直線EF的斜率為定值,并求出這個(gè)定值。
(1).(2)直線EF的斜率為定值,其值為。
【解析】
試題分析:(1)由題意,c=1,可設(shè)橢圓方程為。
因?yàn)锳在橢圓上,所以,解得=3,=(舍去)。
所以橢圓方程為 . 6分
(2)設(shè)直線AE方程:得,代入得
設(shè)E(,),F(xiàn)(,).因?yàn)辄c(diǎn)A(1,)在橢圓上,所以
,
。 9分
又直線AF的斜率與AE的斜率互為相反數(shù),在上式中以代,可得
,
。
所以直線EF的斜率。
即直線EF的斜率為定值,其值為。 13分
考點(diǎn):本題主要考查橢圓的標(biāo)準(zhǔn)方程及其幾何性質(zhì),直線與橢圓的位置關(guān)系。
點(diǎn)評(píng):中檔題,本題求橢圓的標(biāo)準(zhǔn)方程,主要運(yùn)用的橢圓的幾何性質(zhì),注意明確焦點(diǎn)軸和a,b,c的關(guān)系。研究直線與圓錐曲線的位置關(guān)系,往往應(yīng)用韋達(dá)定理,通過(guò)“整體代換”,簡(jiǎn)化解題過(guò)程,實(shí)現(xiàn)解題目的。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知,橢圓C以過(guò)點(diǎn)A(1,),兩個(gè)焦點(diǎn)為(-1,0)(1,0)。
(Ⅰ)求橢圓C的方程;
(Ⅱ)E,F是橢圓C上的兩個(gè)動(dòng)點(diǎn),如果直線AE的斜率與AF的斜率互為相反數(shù),證明直線EF的斜率為定值,并求出這個(gè)定值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆安徽省高二下第三次(期末)質(zhì)檢文科數(shù)學(xué)卷(解析版) 題型:解答題
已知,橢圓C以過(guò)點(diǎn)A(1,),兩個(gè)焦點(diǎn)為(-1,0)(1,0)。
(1)求橢圓C的方程;
(2)E,F是橢圓C上的兩個(gè)動(dòng)點(diǎn),如果直線AE的斜率與AF的斜率互為相反數(shù),證明直線EF的斜率為定值,并求出這個(gè)定值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013屆河北省高二下學(xué)期第一次考試文科數(shù)學(xué)試卷 題型:解答題
已知,橢圓C以過(guò)點(diǎn)A(1,),兩個(gè)焦點(diǎn)為(-1,0)(1,0)。
(1)求橢圓C的方程;
(2)E,F是橢圓C上的兩個(gè)動(dòng)點(diǎn),如果直線AE的斜率與AF的斜率互為相反數(shù),證明直線EF的斜率為定值,并求出這個(gè)定值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013屆山東省濟(jì)寧市高二3月月考文科數(shù)學(xué)試卷 題型:解答題
已知,橢圓C以過(guò)點(diǎn)A(1,),兩個(gè)焦點(diǎn)為(-1,0)(1,0)。
(1)求橢圓C的方程;
(2)E,F是橢圓C上的兩個(gè)動(dòng)點(diǎn),如果直線AE的斜率與AF的斜率互為相反數(shù),證明直線EF的斜率為定值,并求出這個(gè)定值。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com