函數(shù)y=2cos2(x+
π
4
)-1
的一個單調(diào)遞增區(qū)間是(  )
A、(
π
2
, 
2
)
B、(
π
4
, 
4
)
C、(-
π
2
, 
π
2
)
D、(-
π
4
, 
π
4
)
分析:先將原函數(shù)化簡成y=-sin2x,然后根據(jù)選項驗證即可.
解答:解:∵y=2cos2(x+
π
4
)-1=cos2(x+
π
4
)=cos(2x+
π
2
)=-sin2x
,
∴找原函數(shù)的單調(diào)遞增區(qū)間,就是找y=sin2x的單調(diào)遞減區(qū)間;
而y=sin2x在區(qū)間(
π
4
, 
4
)
上是減函數(shù),
故選B.
點評:本題主要考查三角函數(shù)單調(diào)性問題.求三角函數(shù)單調(diào)區(qū)間時,先將原函數(shù)化簡為一次的三角函數(shù),再由三角函數(shù)的基本性質(zhì)進行解題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=2cos2(x-
π4
)-1
的周期是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了得到函數(shù)y=2cos2(x+
π
8
)-1
的圖象,可以將函數(shù)y=sin2x的圖象向右至少平移
8
8
個單位長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•海淀區(qū)一模)函數(shù)y=2cos2(x+
π
3
)
的最小正周期為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個命題:
①函數(shù)y=2cos2(x+
π
6
)的圖象可由曲線y=1+cos2x向左平移
π
3
個單位得到;
②函數(shù)y=sin(x+
π
4
)+cos(x+
π
4
)是偶函數(shù);
③直線x=
π
8
是曲線y=sin(2x+
4
)的一條對稱軸;
④函數(shù)y=2sin2(x+
π
3
)的最小正周期是2π.
其中不正確命題的序號是
 

查看答案和解析>>

同步練習(xí)冊答案