如圖,在△ABC中,∠ABC=90°,AB=,BC=1,P為△ABC內(nèi)一點,∠BPC=90°.
(1)若PB=,求PA;
(2)若∠APB=150°,求tan∠PBA.
(1) (2)
解析試題分析:(1)在三角形中,兩邊和一角知道,該三角形是確定的,其解是唯一的,利用余弦定理求第三邊.(2)利用同角三角函數(shù)的基本關(guān)系求角的正切值.(3)若是已知兩邊和一邊的對角,該三角形具有不唯一性,通常根據(jù)大邊對大角進行判斷.(4)在三角興中,注意這個隱含條件的使用.
試題解析:解:(1)由已知得∠PBC=60°,所以∠PBA=30°.
在△PBA中,由余弦定理得PA2=.
故PA=. 5分
(2)設(shè)∠PBA=α,由已知得PB=sin α.
在△PBA中,由正弦定理得,
化簡得cos α=4sin α.
所以tan α=,即tan∠PBA=. 12分
考點:(1)在三角形中正余弦定理的應(yīng)用.(2)求角的三角函數(shù).
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知a,b,c分別為△ABC三個內(nèi)角A,B,C的對邊,acosC+﹣b=0.
(Ⅰ)求A;
(Ⅱ)若△ABC的面積為,求bsinB+csinC的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在△ABC中,角A,B,C所對的邊分別為a,b,c,已知b=3,c=8,角A為銳角,△ABC的面積為6.
(1)求角A的大小;
(2)求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且bsinA=acosB.
(1)求角B的大小;
(2)若b=3,sinC=2sinA,求a,c的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com