【題目】某公司近年來科研費(fèi)用支出萬元與公司所獲利潤萬元之間有如表的統(tǒng)計
數(shù)據(jù):參考公式:用最小二乘法求出關(guān)于的線性回歸方程為: ,
其中: , ,參考數(shù)值: 。
(Ⅰ)求出;
(Ⅱ)根據(jù)上表提供的數(shù)據(jù)可知公司所獲利潤萬元與科研費(fèi)用支出萬元線性相關(guān),請用最小二乘法求出關(guān)于的線性回歸方程;
(Ⅲ)試根據(jù)(Ⅱ)求出的線性回歸方程,預(yù)測該公司科研費(fèi)用支出為10萬元時公司所獲得的利潤。
【答案】(1)3.5,28(2)(3)64.4萬元
【解析】試題分析:(1)利用平均值公式與所給參考數(shù)值求解即可;(2)利用公式求得,將樣本中心點的坐標(biāo)代入回歸方程,求得,從而可得結(jié)果;(3)利用第二問的回歸方程進(jìn)行求值,預(yù)測即可
試題解析:(1)。
(2) ,
,
。
,
所以回歸方程為。
(3)當(dāng)時, (萬元),
故預(yù)測該公司科研費(fèi)用支出為10萬元時公司所獲得的利潤為64.4萬元。
【方法點晴】本題主要考查線性回歸方程,屬于難題.求回歸直線方程的步驟:①依據(jù)樣本數(shù)據(jù)畫出散點圖,確定兩個變量具有線性相關(guān)關(guān)系;②計算的值;③計算回歸系數(shù);④寫出回歸直線方程為; 回歸直線過樣本點中心是一條重要性質(zhì),利用線性回歸方程可以估計總體,幫助我們分析兩個變量的變化趨勢.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)雙曲線C的焦點在軸上,離心率為,其一個頂點的坐標(biāo)是(0,1).
(Ⅰ)求雙曲線C的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線與該雙曲線交于A、B兩點,且A、B的中點為(2,3),求直線的方程
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,正方體ABCD-A1B1C1D1的棱長為1,線段B1D1上有兩個動點E,F(xiàn),且EF=,則下列結(jié)論中錯誤的是
A.AC⊥BE B.EF∥平面ABCD
C.三棱錐A-BEF的體積為定值 D.異面直線AE,BF所成的角為定值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四面體中,已知⊥平面, , , 為的中點.
(1)求證: ;
(2)若為的中點,點在直線上,且,
求證:直線//平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C經(jīng)過兩點A(3,3),B(4,2),且圓心C在直線上。
(Ⅰ)求圓C的方程;
(Ⅱ)直線過點D(2,4),且與圓C相切,求直線的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“”是“對任意的正數(shù), ”的( )
A. 充分不必要條件 B. 必要不充分條件 C. 充要條件 D. 既不充分也不必要條件
【答案】A
【解析】分析:根據(jù)基本不等式,我們可以判斷出“”?“對任意的正數(shù)x,2x+≥1”與“對任意的正數(shù)x,2x+≥1”?“a=
”真假,進(jìn)而根據(jù)充要條件的定義,即可得到結(jié)論.
解答:解:當(dāng)“a=”時,由基本不等式可得:
“對任意的正數(shù)x,2x+≥1”一定成立,
即“a=”?“對任意的正數(shù)x,2x+≥1”為真命題;
而“對任意的正數(shù)x,2x+≥1的”時,可得“a≥”
即“對任意的正數(shù)x,2x+≥1”?“a=”為假命題;
故“a=”是“對任意的正數(shù)x,2x+≥1的”充分不必要條件
故選A
【題型】單選題
【結(jié)束】
9
【題目】如圖是一幾何體的平面展開圖,其中為正方形, , 分別為, 的中點,在此幾何體中,給出下面四個結(jié)論:①直線與直線異面;②直線與直線異面;③直線平面;④平面平面.
其中一定正確的選項是( )
A. ①③ B. ②③ C. ②③④ D. ①③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某公園摩天輪的半徑為,圓心距地面的高度為,摩天輪做勻速轉(zhuǎn)動,每轉(zhuǎn)一圈,摩天輪上的點的起始位置在最低點處.
(1)已知在時刻時距離地面的高度,(其中),求時距離地面的高度;
(2)當(dāng)離地面以上時,可以看到公園的全貌,求轉(zhuǎn)一圈中有多少時間可以看到公園的全貌?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列四個命題:(1)異面直線是指空間兩條既不平行也不相交的直線;(2)若直線上有兩點到平面的距離相等,則;(3)若直線與平面內(nèi)無窮多條直線都垂直,則;(4)兩條異面直線中的一條垂直于平面,則另一條必定不垂直于平面.其中正確命題的個數(shù)是 ( )
A. 0個 B. 1個 C. 2個 D. 3個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四棱錐中, 面, 是平行四邊形, , ,點為棱的中點,點在棱上,且,平面與交于點,則異面直線與所成角的正切值為__________.
【答案】
【解析】
延長交的延長線與點Q,連接QE交PA于點K,設(shè)QA=x,
由,得,則,所以.
取的中點為M,連接EM,則,
所以,則,所以AK=.
由AD//BC,得異面直線與所成角即為,
則異面直線與所成角的正切值為.
【題型】填空題
【結(jié)束】
17
【題目】在極坐標(biāo)系中,極點為,已知曲線: 與曲線: 交于不同的兩點, .
(1)求的值;
(2)求過點且與直線平行的直線的極坐標(biāo)方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com