【題目】如圖,在四棱錐中,底面是平行四邊形,,側面底面,,.
(Ⅰ)求證:平面面;
(Ⅱ)過的平面交于點,若平面把四面體分成體積相等的兩部分,求二面角的余弦值.
【答案】(I)詳見解析;(II).
【解析】
(Ⅰ)由題意得到面,從而.又由題意證得四邊形為菱形,故得,于是平面.根據面面垂直的判定定理可得結論成立.(Ⅱ)由題意得為中點,建立空間直角坐標系,求出平面和平面的法向量,根據兩向量夾角的余弦值可得二面角的余弦值.
(Ⅰ)證明:因為,則,
又側面底面,平面平面,平面,
所以面.
因為平面,則.
又因為,四邊形為平行四邊形,
則,又
則為等邊三角形,則四邊形為菱形,
所以.
又,
所以平面.
又面,
所以平面平面.
(Ⅱ)由平面把四面體分成體積相等的兩部分,則為中點.
由(Ⅰ)知面,且四邊形為菱形、.以A為原點建立如圖所示的空間直角坐標系,
則,.
設平面的法向量為,
由,得,
令,可得.
同理,平面的法向量.
所以.
由圖形得二面角為鈍角,
所以二面角的余弦值為.
科目:高中數學 來源: 題型:
【題目】某校舉行運動會,其中三級跳遠的成績在8.0米 (四舍五入,精確到0.1米) 以上的進入決賽,把所得數據進行整理后,分成6組畫出頻率分布直方圖的一部分(如圖),已知從左到右前5個小組的頻率分別為0.04,0.10,0.14,0.28,0.30 ,第6小組的頻數是7 .
(Ⅰ)求進入決賽的人數;
(Ⅱ)若從該校學生(人數很多)中隨機抽取兩名,記表示兩人中進入決賽的人數,求的分布列及數學期望;
(Ⅲ) 經過多次測試后發(fā)現,甲成績均勻分布在8~10米之間,乙成績均勻分布在9.5~10.5米之間,現甲,乙各跳一次,求甲比乙遠的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線()的焦點F,E上一點到焦點的距離為4.
(1)求拋物線E的方程;
(2)過F作直線l交拋物線E于A,B兩點,若直線AB中點的縱坐標為,求直線l的方程及弦的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知圓及點,.
(1)若直線平行于,與圓相交于,兩點,,求直線的方程;
(2)在圓上是否存在點,使得?若存在,求點的個數;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】關于的說法,正確的是( )
A.展開式中的二項式系數之和為2048
B.展開式中只有第6項的二項式系數最大
C.展開式中第6項和第7項的二項式系數最大
D.展開式中第6項的系數最小
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知二次函數,有兩個零點為和.
(1)求、的值;
(2)證明:;
(3)用單調性定義證明函數在區(qū)間上是增函數;
(4)求在區(qū)間上的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C是圓周上不同于A,B的任意一點,PA⊥平面ABC,則四面體P-ABC的四個面中,直角三角形的個數有( 。
A. 4個B. 3個C. 2個D. 1個
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在“應用”的用戶中隨機抽取了100名用戶進行調查得到如下數據:
每周使用時間 | 及以上 | |||||
男 | 4 | 3 | 3 | 7 | 6 | 30 |
女 | 6 | 5 | 4 | 4 | 8 | 20 |
合計 | 10 | 8 | 7 | 11 | 14 | 50 |
(1)在每周使用該“應用”時間不超過的樣本中,按性別分層抽樣,隨機抽取5名用戶:
①求抽取的5名用戶中男,女用戶各多少人;
②從這5名用戶中隨機抽取2名用戶,求抽取的2名用戶均為男用戶的概率.
(2)如果每周使用該“應用”超過的用戶認為“喜歡該應用”,能否在犯錯誤的概率不超過0.05的前提下認為“喜歡該應用”與性別有關.
參考公式:,其中
下面的臨界值表僅供參考:
0.10 | 0.05 | 0.01 | |
2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我國古代數學家祖暅提出原理:“冪勢既同,則積不容異”.其中“冪”是截面積,“勢”是幾何體的高.原理的意思是:夾在兩個平行平面間的兩個幾何體,被任一平行于這兩個平行平面的平面所截,若所截的兩個截面的面積恒相等,則這兩個幾何體的體積相等.如圖所示,在空間直角坐標系的坐標平面內,若函數的圖象與軸圍成一個封閉區(qū)域,將區(qū)域沿軸的正方向上移4個單位,得到幾何體如圖一.現有一個與之等高的圓柱如圖二,其底面積與區(qū)域面積相等,則此圓柱的體積為__________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com