【題目】已知函數(shù).
(1)若,求的最小值;
(2)若,且,證明:.
【答案】(1);(2)證明見解析
【解析】
(1)當(dāng)時(shí),,先求導(dǎo)可得,設(shè),利用導(dǎo)函數(shù)可判斷在上單調(diào)遞增,由,即可判斷的單調(diào)性,進(jìn)而求解;
(2)先求導(dǎo)可得,容易得到在上單調(diào)遞增,由,即可判斷在上單調(diào)遞減,在上單調(diào)遞增,設(shè),則,,設(shè),利用導(dǎo)函數(shù)可判斷在上單調(diào)遞增,則,即,則可得,即,進(jìn)而由的單調(diào)性求證即可.
(1)解:當(dāng)時(shí),,
所以,
設(shè),則,所以在上單調(diào)遞增,
即在上單調(diào)遞增,
因?yàn)?/span>,
所以當(dāng)時(shí),;當(dāng)時(shí),,
因此在上單調(diào)遞減,在上單調(diào)遞增,
所以.
(2)證明:,則,所以在上單調(diào)遞增,因?yàn)?/span>,
所以當(dāng)時(shí),;當(dāng)時(shí),,
因此,在上單調(diào)遞減,在上單調(diào)遞增,
由,不妨設(shè),則,,
令
,
則
,
當(dāng)時(shí),,
故,所以在上單調(diào)遞增;
所以當(dāng)時(shí),即時(shí),,
因此,
又,所以,
因?yàn)?/span>,,在上單調(diào)遞增,
所以,即,故.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地開發(fā)一片荒地,如圖,荒地的邊界是以C為圓心,半徑為1千米的圓周.已有兩條互相垂直的道路OE,OF,分別與荒地的邊界有且僅有一個(gè)接觸點(diǎn)A,B.現(xiàn)規(guī)劃修建一條新路(由線段MP,,線段QN三段組成),其中點(diǎn)M,N分別在OE,OF上,且使得MP,QN所在直線分別與荒地的邊界有且僅有一個(gè)接觸點(diǎn)P,Q,所對(duì)的圓心角為.記∠PCA=(道路寬度均忽略不計(jì)).
(1)若,求QN的長(zhǎng)度;
(2)求新路總長(zhǎng)度的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(t為參數(shù),).在以坐標(biāo)原點(diǎn)為極點(diǎn)、x軸的非負(fù)半軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為.
(1)若點(diǎn)在直線l上,求線l的直角坐標(biāo)方程和曲線C的直角坐標(biāo)方程;
(2)已知,點(diǎn)P在直線l上,點(diǎn)Q在曲線C上,且的最小值為,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定點(diǎn)S( -2,0) ,T(2,0),動(dòng)點(diǎn)P為平面上一個(gè)動(dòng)點(diǎn),且直線SP、TP的斜率之積為.
(1)求動(dòng)點(diǎn)P的軌跡E的方程;
(2)設(shè)點(diǎn)B為軌跡E與y軸正半軸的交點(diǎn),是否存在直線l,使得l交軌跡E于M,N兩點(diǎn),且F(1,0)恰是△BMN的垂心?若存在,求l的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)集,其中,且,若對(duì),與兩數(shù)中至少有一個(gè)屬于,則稱數(shù)集具有性質(zhì).
(1)分別判斷數(shù)集與數(shù)集是否具有性質(zhì),說明理由;
(2)已知數(shù)集具有性質(zhì),判斷數(shù)列,,…,是否為等差數(shù)列,若是等差數(shù)列,請(qǐng)證明;若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是菱形,,是棱的中點(diǎn),.
(1)證明:平面;
(2)設(shè)是線段的中點(diǎn),且平面,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)F2是雙曲線的右焦點(diǎn),動(dòng)點(diǎn)A在雙曲線左支上,直線l1:tx﹣y+t﹣2=0與直線l2:x+ty+2t﹣1=0的交點(diǎn)為B,則|AB|+|AF2|的最小值為( )
A.8B.C.9D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】紅鈴蟲(Pectinophora gossypiella)是棉花的主要害蟲之一,其產(chǎn)卵數(shù)與溫度有關(guān).現(xiàn)收集到一只紅鈴蟲的產(chǎn)卵數(shù)y(個(gè))和溫度x(℃)的8組觀測(cè)數(shù)據(jù),制成圖1所示的散點(diǎn)圖.現(xiàn)用兩種模型①,②分別進(jìn)行擬合,由此得到相應(yīng)的回歸方程并進(jìn)行殘差分析,進(jìn)一步得到圖2所示的殘差圖.
根據(jù)收集到的數(shù)據(jù),計(jì)算得到如下值:
25 | 2.89 | 646 | 168 | 422688 | 48.48 | 70308 |
表中;;;;
(1)根據(jù)殘差圖,比較模型①、②的擬合效果,應(yīng)選擇哪個(gè)模型?并說明理由;
(2)根據(jù)(1)中所選擇的模型,求出y關(guān)于x的回歸方程(系數(shù)精確到0.01),并求溫度為34℃時(shí),產(chǎn)卵數(shù)y的預(yù)報(bào)值.
(參考數(shù)據(jù):,,,)
附:對(duì)于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《中國制造2025》是經(jīng)國務(wù)院總理李克強(qiáng)簽批,由國務(wù)院于2015年5月印發(fā)的部署全面推進(jìn)實(shí)施制造強(qiáng)國的戰(zhàn)略文件,是中國實(shí)施制造強(qiáng)國戰(zhàn)略第一個(gè)十年的行動(dòng)綱領(lǐng).制造業(yè)是國民經(jīng)濟(jì)的主體,是立國之本、興國之器、強(qiáng)國之基.發(fā)展制造業(yè)的基本方針為質(zhì)量為先,堅(jiān)持把質(zhì)量作為建設(shè)制造強(qiáng)國的生命線.某制造企業(yè)根據(jù)長(zhǎng)期檢測(cè)結(jié)果,發(fā)現(xiàn)生產(chǎn)的產(chǎn)品質(zhì)量與生產(chǎn)標(biāo)準(zhǔn)的質(zhì)量差都服從正態(tài)分布N(μ,σ2),并把質(zhì)量差在(μ﹣σ,μ+σ)內(nèi)的產(chǎn)品為優(yōu)等品,質(zhì)量差在(μ+σ,μ+2σ)內(nèi)的產(chǎn)品為一等品,其余范圍內(nèi)的產(chǎn)品作為廢品處理.優(yōu)等品與一等品統(tǒng)稱為正品.現(xiàn)分別從該企業(yè)生產(chǎn)的正品中隨機(jī)抽取1000件,測(cè)得產(chǎn)品質(zhì)量差的樣本數(shù)據(jù)統(tǒng)計(jì)如下:
(1)根據(jù)頻率分布直方圖,求樣本平均數(shù)
(2)根據(jù)大量的產(chǎn)品檢測(cè)數(shù)據(jù),檢查樣本數(shù)據(jù)的方差的近似值為100,用樣本平均數(shù)作為μ的近似值,用樣本標(biāo)準(zhǔn)差s作為σ的估計(jì)值,求該廠生產(chǎn)的產(chǎn)品為正品的概率.(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表)
[參考數(shù)據(jù):若隨機(jī)變量ξ服從正態(tài)分布N(μ,σ2),則:P(μ﹣σ<ξ≤μ+σ)≈0.6827,P(μ﹣2σ<ξ≤μ+2σ)≈0.9545,P(μ﹣3σ<ξ≤μ+3σ)≈0.9973.
(3)假如企業(yè)包裝時(shí)要求把3件優(yōu)等品球和5件一等品裝在同一個(gè)箱子中,質(zhì)檢員每次從箱子中摸出三件產(chǎn)品進(jìn)行檢驗(yàn),記摸出三件產(chǎn)品中優(yōu)等品球的件數(shù)為X,求X的分布列以及期望值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com