已知x=3是函數(shù)f(x)=aln(1+x)+x2-10x的一個極值點.
(1)求a;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)若直線yb與函數(shù)yf(x)的圖象有3個交點,求b的取值范圍.
(1)a=16(2)單調(diào)增區(qū)間為(-1,1),(3,+∞),單調(diào)減區(qū)間為(1,3).(3)(32ln 2-21,16ln 2-9)
f(x)的定義域為(-1,+∞).
(1)f′(x)=+2x-10,又f′(3)=+6-10=0,
a=16.經(jīng)檢驗此時x=3為f(x)的極值點,故a=16.
(2)由(1)知f′(x)=.
當-1<x<1或x>3時,f′(x)>0;
當1<x<3時,f′(x)<0.
f(x)的單調(diào)增區(qū)間為(-1,1),(3,+∞),
單調(diào)減區(qū)間為(1,3).
(3)由(2)知,f(x)在(-1,1)上單調(diào)遞增,在(1,3)上單調(diào)遞減,在(3,+∞)上單調(diào)遞增,且當x=1或x=3時,f′(x)=0.所以f(x)的極大值為f(1)=16ln 2-9,極小值為f(3)=32ln 2-21.
因為f(16)>162-10×16>16ln 2-9=f(1),
f(e-2-1)<-32+11=-21<f(3),
所以根據(jù)函數(shù)f(x)的大致圖象可判斷,在f(x)的三個單調(diào)區(qū)間(-1,1),(1,3),(3,+∞)內(nèi),直線ybyf(x)的圖象各有一個交點,當且僅當f(3)<b<f(1).
因此b的取值范圍為(32ln 2-21,16ln 2-9).
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)處存在極值.
(1)求實數(shù)的值;
(2)函數(shù)的圖像上存在兩點A,B使得是以坐標原點O為直角頂點的直角三角形,且斜邊AB的中點在軸上,求實數(shù)的取值范圍;
(3)當時,討論關(guān)于的方程的實根個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(1)已知函數(shù)f(x)=ex-1-tx,?x0∈R,使f(x0)≤0,求實數(shù)t的取值范圍;
(2)證明:<ln,其中0<a<b;
(3)設(shè)[x]表示不超過x的最大整數(shù),證明:[ln(1+n)]≤[1++ +]≤1+[lnn](n∈N*).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù).
(1)若,則,滿足什么條件時,曲線處總有相同的切線?
(2)當時,求函數(shù)的單調(diào)減區(qū)間;
(3)當時,若對任意的恒成立,求的取值的集合.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在區(qū)間上有極值點,則實數(shù)的取值范圍是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設(shè)f(x)=x2-2x-4ln x,則f′(x)>0的解集為________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知函數(shù)f(x)=x3-2x2+3m,x∈[0,+∞),若f(x)+5≥0恒成立,則實數(shù)m的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設(shè)直線xt,與函數(shù)f(x)=x2,g(x)=ln x的圖象分別交于點M,N,則當|MN|達到最小時t的值為________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=xln xg(x)=x3ax2x+2.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)對一切x∈(0,+∞),2f(x)≤g′(x)+2恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案