已知點F是橢圓=1(a>b>0)的右焦點,過原點的直線交橢圓于點A、P,PF垂直于x軸,直線AF交橢圓于點B,PB⊥PA,則該橢圓的離心率e=________.
科目:高中數(shù)學 來源:廣東省汕頭市六都中學2010-2011學年高二下學期第三學段考試數(shù)學理科試題 題型:044
已知點F是橢圓的右焦點,點M(m,0)、N(0,n)分別是x軸、y軸上的動點,且滿足.若點P滿足.
(1)求點P的軌跡C的方程;
(2)設過點F任作一直線與點P的軌跡交于A、B兩點,直線OA、OB與直線x=-a分別交于點S、T(O為坐標原點),試判斷是否為定值?若是,求出這個定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源:江蘇省常州市2012屆高三教育學會學業(yè)水平監(jiān)測數(shù)學試題 題型:044
在平面直角坐標系xOy中,已知圓x2+y2=1與x軸正半軸的交點為F,AB為該圓的一條弦,直線AB的方程為x=m.記以AB為直徑的圓為⊙C,記以點F為右焦點、短半軸長為b(b>0,b為常數(shù))的橢圓為D.
(1)求⊙C和橢圓D的標準方程;
(2)當b=1時,求證:橢圓D上任意一點都不在⊙C的內(nèi)部;
(3)已知點M是橢圓D的長軸上異于頂點的任意一點,過點M且與x軸不垂直的直線交橢圓D于P、Q兩點(點P在x軸上方),點P關于x軸的對稱點為N,設直線QN交x軸于點L,試判斷·是否為定值?并證明你的結論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本題滿分14分)
已知點M在橢圓+=1(a>b>0)上,以M為圓心的圓與x軸相切于橢圓的右焦點F.
(1)若圓M與y軸相切,求橢圓的離心率;
(2)若圓M與y軸相交于A,B兩點,且△ABM是邊長為2的正三角形,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本題滿分14分)
已知點M在橢圓+=1(a>b>0)上,以M為圓心的圓與x軸相切于橢圓的右焦點F.
(1)若圓M與y軸相切,求橢圓的離心率;
(2)若圓M與y軸相交于A,B兩點,且△ABM是邊長為2的正三角形,求橢圓的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com