(2006•崇文區(qū)一模)橢圓
x2
4
+y2=1
上的一點(diǎn)P到左焦點(diǎn)的距離為1,則它到相對應(yīng)的準(zhǔn)線的距離為( 。
分析:先根據(jù)橢圓方程求得橢圓的半焦距c,進(jìn)而可求得離心率,進(jìn)而根據(jù)橢圓的第二定義求得點(diǎn)P到左準(zhǔn)線的距離即可.
解答:解:根據(jù)橢圓的第二定義可知:P到左焦點(diǎn)的距離與其到左準(zhǔn)線的距離之比為離心率,
依題意可知a=2,b=1,
∴c=
3

∴e=
c
a
=
3
2
,
∵點(diǎn)P到左焦點(diǎn)的距離為1,
∴P到橢圓左準(zhǔn)線的距離為
1
e
=
2
3
3

故選B.
點(diǎn)評:本題主要考查了橢圓的簡單性質(zhì),解題的關(guān)鍵是靈活利用橢圓的第二定義.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2006•崇文區(qū)一模)如果復(fù)數(shù)
1+bi
1+i
(b∈R)的實部和虛部互為相反數(shù),則b等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•崇文區(qū)一模)已知直線m、n及平面α、β,則下列命題正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•崇文區(qū)一模)如圖,直三棱柱ABC-A′B′C′中,CB⊥平面ABB′A′,點(diǎn)E是棱BC的中點(diǎn),AB=BC=AA′
(I)求證直線CA′∥平面AB′E;
(II)求二面角C-A′B′-B的大;
(III)求直線CA′與平面BB′C′C所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•崇文區(qū)一模)某足球賽事中甲乙兩中球隊進(jìn)入決賽,但乙隊明顯處于弱勢,乙隊為爭取勝利決定采取這樣的戰(zhàn)術(shù):頑強(qiáng)防守,0:0逼平甲隊,進(jìn)入點(diǎn)球大戰(zhàn).現(xiàn)規(guī)定:點(diǎn)球大戰(zhàn)中每隊各出5名隊員,且每名隊員都踢一球,假設(shè)在點(diǎn)球大戰(zhàn)中雙方每名運(yùn)動員進(jìn)球概率均為
34
.求:
(I)乙隊踢進(jìn)4個球的概率有多大?
(II)5個點(diǎn)球過后是4:4或5:5平局的概率有多大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•崇文區(qū)一模)已知f(x)=ax3+x2+cx是定義在R上的函數(shù),f(x)在[-1,0]和[4,5]上是減函數(shù),在[0,2]上是增函數(shù).
(I)求c的值;
(II)求a的取值范圍;
(III)在函數(shù)f(x)的圖象上是否存在一點(diǎn)M(x0,y0),使得曲線y=f(x)在點(diǎn)M處的切線的斜率為3,若存在,求出點(diǎn)M的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案