已知直線與拋物線沒有交點;方程表示橢圓;若為真命題,試求實數(shù)的取值范圍.

解析試題分析:因為為真命題,所以為真命題且為真命題.命題為真時,直線與拋物線沒有交點,.命題為真時,,.綜合得實數(shù)的取值范圍為.本題易錯點為忽視去掉方程為圓的情況.
試題解析:解:因為為真命題,所以為真命題且為真命題        2分
消去
直線與拋物線沒有交點,,解得      6分
方程表示橢圓,則
解得                                   10分
由上可知的取值范圍是                      12分
考點:橢圓方程限制條件,直線與拋物線位置關(guān)系

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

在平面直角坐標系xOy中,拋物線C的頂點在原點,經(jīng)過點A(2,2),其焦點F在x軸上.

(1)求拋物線C的標準方程;
(2)求過點F,且與直線OA垂直的直線的方程;
(3)設(shè)過點M(m,0)(m>0)的直線交拋物線C于D、E兩點,ME=2DM,記D和E兩點間的距離為f(m),求f(m)關(guān)于m的表達式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在平面直角坐標系xOy中,橢圓C:=1(a>b>0)的離心率為,以原點為圓心,橢圓C的短半軸長為半徑的圓與直線x-y+2=0相切.

(1)求橢圓C的方程;
(2)已知點P(0,1),Q(0,2).設(shè)M、N是橢圓C上關(guān)于y軸對稱的不同兩點,直線PM與QN相交于點T,求證:點T在橢圓C上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,兩條相交線段、的四個端點都在拋物線上,其中,直線的方程為,直線的方程為

(1)若,,求的值;
(2)探究:是否存在常數(shù),當變化時,恒有

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知是橢圓的兩個焦點,為坐標原點,點在橢圓上,且,⊙是以為直徑的圓,直線與⊙相切,并且與橢圓交于不同的兩點

(1)求橢圓的標準方程;
(2)當,且滿足時,求弦長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

P為圓A:上的動點,點.線段PB的垂直平分線與半徑PA相交于點M,記點M的軌跡為Γ.
(1)求曲線Γ的方程;
(2)當點P在第一象限,且時,求點M的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓E:+=1(a>b>0),以拋物線y2=8x的焦點為頂點,且離心率為.
(1)求橢圓E的方程;
(2)若F為橢圓E的左焦點,O為坐標原點,直線l:y=kx+m與橢圓E相交于A、B兩點,與直線x=-4相交于Q點,P是橢圓E上一點且滿足=+,證明·為定值,并求出該值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

橢圓C:  +=1(a>b>0)的離心率e=,a+b=3.

(1)求橢圓C的方程;
(2)如圖,A,B,D是橢圓C的頂點,P是橢圓C上除頂點外的任意一點,直線DP交x軸于點N,直線AD交BP于點M,設(shè)BP的斜率為k,MN的斜率為m.證明2m-k為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓M=1(ab>0)的短半軸長b=1,且橢圓上一點與橢圓的兩個焦點構(gòu)成的三角形的周長為6+4.
(1)求橢圓M的方程;
(2)設(shè)直線lxmyt與橢圓M交于A,B兩點,若以AB為直徑的圓經(jīng)過橢圓的右頂點C,求t的值.

查看答案和解析>>

同步練習冊答案