設(shè),函數(shù)的最大值是14,求的值。

解析試題分析:先利用分類討論思想對(duì)a分類再利用換元法將y變成,然后利用二次函數(shù)對(duì)稱軸t=-1,所以在區(qū)間t上函數(shù)單調(diào)遞增,即可確定f(x)max=由題得f(x)max=14,所以可以求出.
試題解析:令,則原函數(shù)化為  2分
①當(dāng)時(shí),  3分
此時(shí)上為增函數(shù),所以  6分
所以  7分
②當(dāng)時(shí),  8分
此時(shí)上為增函數(shù),所以  10分
所以  11分
綜上  12分
考點(diǎn):1,函數(shù)單調(diào)性 2,函數(shù)奇偶性.3,換元法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),當(dāng)時(shí),恒有
(1)求證:是奇函數(shù);
(2)如果為正實(shí)數(shù),,并且,試求在區(qū)間[-2,6]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知為實(shí)數(shù),
(1)若,求 上的最大值和最小值;
(2)若上都是遞增的,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

函數(shù).
(1)若,函數(shù)在區(qū)間上是單調(diào)遞增函數(shù),求實(shí)數(shù)的取值范圍;
(2)設(shè),若對(duì)任意恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知
(1)判斷的奇偶性;
(2)討論的單調(diào)性;
(3)當(dāng)時(shí),恒成立,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

是否存在這樣的實(shí)數(shù)a,使函數(shù)f(x)=x2+(3a-2)x+a-1在區(qū)間[-1,3]上恒有一個(gè)零點(diǎn),且只有一個(gè)零點(diǎn)?若存在,求出a的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某商場(chǎng)銷售某種商品的經(jīng)驗(yàn)表明,該商品每日的銷售量(單位:千克)與銷售價(jià)格(單位:元/千克)滿足關(guān)系式其中為常數(shù)。己知銷售價(jià)格為5元/千克時(shí),每日可售出該商品11千克.
(1)求的值;
(2)若該商品的成本為3元/千克,試確定銷售價(jià)格的值,使商場(chǎng)每日銷售該商品所獲得的利潤(rùn)最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知是二次函數(shù),不等式的解集是(0,5),且在區(qū)間[-1,4]上的最大值是12.
(1)求f(x)的解析式;
(2)是否存在正整數(shù)m,使得方程在區(qū)間內(nèi)有且只有兩個(gè)不等的實(shí)數(shù)根?若存在,求出所有m的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

若函數(shù)yf(x)的圖象與函數(shù)的圖象關(guān)于直線x-y=0對(duì)稱,則f(x)=
__________________________________.

查看答案和解析>>

同步練習(xí)冊(cè)答案