設(shè)數(shù)學(xué)公式數(shù)學(xué)公式數(shù)學(xué)公式是任意的三個(gè)非零平面向量,且他們相互不共線(xiàn),給出下列命題
①(數(shù)學(xué)公式數(shù)學(xué)公式數(shù)學(xué)公式=(數(shù)學(xué)公式數(shù)學(xué)公式數(shù)學(xué)公式
②|數(shù)學(xué)公式|-|數(shù)學(xué)公式|<|數(shù)學(xué)公式-數(shù)學(xué)公式|;
③(3數(shù)學(xué)公式+2數(shù)學(xué)公式)•(3數(shù)學(xué)公式-2數(shù)學(xué)公式)=9數(shù)學(xué)公式-4數(shù)學(xué)公式;
④(數(shù)學(xué)公式數(shù)學(xué)公式數(shù)學(xué)公式-(數(shù)學(xué)公式數(shù)學(xué)公式數(shù)學(xué)公式不與數(shù)學(xué)公式垂直.
其中正確的有


  1. A.
    ①②
  2. B.
    ②③
  3. C.
    ③④
  4. D.
    ②④
B
分析:①因?yàn)椋?img class='latex' src='http://thumb.zyjl.cn/pic5/latex/44.png' />•是表示與向量共線(xiàn)的向量,而(是表示與向量共線(xiàn)的向量.
②根據(jù)三角形的性質(zhì):任意兩邊之差小于第三邊可得||-||<|-|.
③向量的運(yùn)算滿(mǎn)足平方差公式.
④因?yàn)閇(-(]•=(-(=0,所以(-(垂直.
解答:①因?yàn)椋?img class='latex' src='http://thumb.zyjl.cn/pic5/latex/44.png' />•是表示與向量共線(xiàn)的向量,而(是表示與向量共線(xiàn)的向量,所以①錯(cuò)誤.
②因?yàn)?img class='latex' src='http://thumb.zyjl.cn/pic5/latex/44.png' />,,是任意兩個(gè)都不共線(xiàn)的向量,所以根據(jù)三角形的性質(zhì):任意兩邊之差小于第三邊可得||-||<|-|正確,所以②正確.
③根據(jù)向量的運(yùn)算性質(zhì)可得:向量的運(yùn)算滿(mǎn)足平方差公式,即(3+2)•(3-2)=9-4正確,所以③正確.
④因?yàn)閇(-(]•=(-(=0,所以(-(垂直,所以④錯(cuò)誤.
故選②③.
點(diǎn)評(píng):解決此類(lèi)問(wèn)題的關(guān)鍵是熟練掌握平面向量數(shù)量積的定義與運(yùn)算滿(mǎn)足的運(yùn)算律,以及熟練掌握利用向量的數(shù)量積判斷平面向量的垂直共線(xiàn),此題屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有下列幾個(gè)命題:①若
a
b
-
c
都是非零向量,則“
a
b
=
a
c
”是“
a
⊥(
b
-
c
)
”的充要條件;②已知等腰△ABC的腰為底的2倍,則頂角A的正切值是
15
7
;③在平面直角坐標(biāo)系xoy中,四邊形ABCD的邊AB∥DC,AD∥BC,已知點(diǎn)A(-2,0),B(6,8),C(8,6),則D點(diǎn)的坐標(biāo)為(0,-1);④設(shè)
a
,
b
,
c
為同一平面內(nèi)具有相同起點(diǎn)的任意三個(gè)非零向量,且滿(mǎn)足
a
b
不共線(xiàn),
a
c
,|
a
|=|
c
|,則|
b
c
|的值一定等于以
a
,
b
為鄰邊的平行四邊形的面積.其中正確命題的序號(hào)是
 
.(寫(xiě)出全部正確結(jié)論的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)
a
,
b
c
是任意的三個(gè)非零平面向量,且他們相互不共線(xiàn),給出下列命題
①(
a
b
c
=(
c
a
b
;
②|
a
|-|
b
|<|
a
-
b
|;
③(3
a
+2
b
)•(3
a
-2
b
)=9|
a
|
2
-4|
b
|
2
;
④(
c
b
a
-(
c
a
b
不與
c
垂直.
其中正確的有(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)
a
、
b
c
是任意三個(gè)非零向量,且互不共線(xiàn),有下列四個(gè)命題:
①(
a
.
b
).
c
-(
a
.
c
).
b
=
0
;         ②|
a
-
b
|≤|
a
|+|
b
|;
③(
b
.
c
).
a
-(
c
.
a
).
b
c
不垂直;     ④(
a
+
b
)(
a
-
b
)=|
a
|2+|
b
|2
其中真命題的有( 。﹤(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2007-2008學(xué)年浙江省溫州市八校聯(lián)考高一(上)期末數(shù)學(xué)試卷(解析版) 題型:選擇題

設(shè),,是任意的三個(gè)非零平面向量,且他們相互不共線(xiàn),給出下列命題
=;
②||-||<|-|;
③(3+2)•(3-2)=9-4;
-不與垂直.
其中正確的有( )
A.①②
B.②③
C.③④
D.②④

查看答案和解析>>

同步練習(xí)冊(cè)答案