分析 求出雙曲線(xiàn)的焦點(diǎn)坐標(biāo),利用雙曲線(xiàn)的漸近線(xiàn)方程,轉(zhuǎn)化求解即可.
解答 解:雙曲線(xiàn)C與橢圓x2+4y2=64有相同的焦點(diǎn)(±4$\sqrt{3}$,0),直線(xiàn)$x+\sqrt{3}y=0$為雙曲線(xiàn)C的一條漸近線(xiàn),
可得$\frac{a}=\frac{\sqrt{3}}{3}$,又a2+b2=48,可知a2=36,b2=12.
則雙曲線(xiàn)C的方程是:$\frac{{x}^{2}}{36}-\frac{{y}^{2}}{12}=1$.
故答案為:$\frac{{x}^{2}}{36}-\frac{{y}^{2}}{12}=1$.
點(diǎn)評(píng) 本題考查橢圓的簡(jiǎn)單性質(zhì)以及雙曲線(xiàn)的簡(jiǎn)單性質(zhì)的應(yīng)用,雙曲線(xiàn)法方程的求法,考查計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 12 | B. | 15 | C. | 18 | D. | 24 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{8}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{2}$ | D. | 沒(méi)有最大值 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (2,+∞) | B. | (-∞,3) | C. | (-∞,1] | D. | [3,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com