3.函數(shù)y=-x2-4mx+1在[2,+∞)上是減函數(shù),則m的取值范圍是( 。
A.[-1,+∞)B.(-∞,1)C.(-∞,-1]D.(1,+∞)

分析 求出二次函數(shù)的對稱軸,利用函數(shù)的單調(diào)性列出不等式求解即可.

解答 解:函數(shù)y=-x2-4mx+1開口向下,對稱軸為:x=-2m,在[2,+∞)上是減函數(shù),
可得:-2m≤2,解得m≥-1.
故選:A.

點評 本題考查二次函數(shù)的簡單性質(zhì)的應(yīng)用,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.計算10lg3+log525=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在長方體ABCD-A1B1C1B1中,AA1=2AB=2AD=4,點E在CC1上且C1E=3EC.利用空間向量解決下列問題:
(1)證明:A1C⊥平面BED;
(2)求銳二面角A1-DE-B 的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)等差數(shù)列{an}的前項和為Sn,且a2=2,S5=15,數(shù)列{bn}的前項和為Tn,且b1=$\frac{1}{2}$,2nbn+1=(n+1)bn(n∈N*
(Ⅰ)求數(shù)列{an}通項公式an及前項和Sn
(Ⅱ) 求數(shù)列{bn}通項公式bn及前項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.將一個直角三角形繞斜邊所在的直線旋轉(zhuǎn)一周,所得的幾何體包括(  )
A.一個圓臺B.一個圓錐C.一個圓柱D.兩個圓錐

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知a∈R,則“a>2”是“a≥1”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知α是第三象限角,sinα=$-\frac{3}{5}$,求$\frac{tan(2π-α)cos(\frac{3π}{2}-α)cos(6π-α)}{sin(α+\frac{3π}{2})cos(α+\frac{3π}{2})}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知△ABC的三個頂點是A(3,0),B(4,5),C(0,7)
(1)求BC邊上的高所在的直線方程(請用直線的一般方程表示解題結(jié)果)
(2)求BC邊上的中線所在的直線方程(請用直線的一般方程表示解題結(jié)果)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知p:“?x∈[1,2],x2-a≥0”,q:“?x∈R”,使得x2+2ax+2-a=0,那么命題“p∧q”為真命題的充要條件是( 。
A.a≤-2或a=1B.a≤-2或1≤a≤2C.a≥1D.-2≤a≤1

查看答案和解析>>

同步練習(xí)冊答案