如圖,A為橢圓上的一個動點,弦AB、AC分別過焦點F1、F2.當AC垂直于x軸 時,恰好|AF1|:|AF2=3:1(I)求該橢圓的離心率;(II)設,,試判斷l(xiāng)1+l2是否為定值?若是,則求出該定值;若不是,請說明理由.

(I)(II)l1+l2是定值6


解析:

:(I)當C垂直于x軸時,

,由,

在Rt△中,

解得 =

(II)由=,則

焦點坐標為,則橢圓方程為,

化簡有.設,

①若直線AC的斜率存在,則直線AC方程為

代入橢圓方程有

由韋達定理得:,∴ 

所以,同理可得

故l1+l2=.②若直線軸,,

 ∴l(xiāng)1+l2=6. 綜上所述:l1+l2是定值6.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,F(xiàn)1,F(xiàn)2是橢圓
x2
a2
+
y2
b2
=1
(a>b>0)上的焦點,P為橢圓上的點,PF1⊥OX軸,且OP和橢圓的一條長軸頂點A和短軸頂點B的連線AB平行.
(1)求橢圓的離心率e
(2)若Q是橢圓上任意一點,證明∠F1QF2
π
2

(3)過F1與OP垂直的直線交橢圓于M,N,若△M F2N的面積為20
3
,求橢圓方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2006-2007學年江蘇省無錫市濱湖區(qū)高二(上)期中數(shù)學試卷(解析版) 題型:解答題

如圖,F(xiàn)1,F(xiàn)2是橢圓(a>b>0)上的焦點,P為橢圓上的點,PF1⊥OX軸,且OP和橢圓的一條長軸頂點A和短軸頂點B的連線AB平行.
(1)求橢圓的離心率e
(2)若Q是橢圓上任意一點,證明∠F1QF2
(3)過F1與OP垂直的直線交橢圓于M,N,若△M F2N的面積為,求橢圓方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2012年湖北省黃岡中學高三適應性考試數(shù)學試卷(理科)(解析版) 題型:選擇題

如圖,P是雙曲線上的動點,F(xiàn)1、F2是雙曲線的焦點,M是∠F1PF2的平分線上的一點,且.有一同學用以下方法研究|OM|:延長F2M交PF1于點N,可知△PNF2為等腰三角形,且M為F2N的中點,得.類似地:P是橢圓上的動點,F(xiàn)1、F2是橢圓的焦點,M是∠F1PF2的平分線上的一點,且.則|OM|的取值范圍是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年江西省重點中學協(xié)作體高三第三次聯(lián)考數(shù)學試卷(理科)(解析版) 題型:解答題

如圖,已知A是橢圓上的一個動點,F(xiàn)1,F(xiàn)2分別為橢圓的左、右焦點,弦AB過點F2,當AB⊥x軸時,恰好有|AF1|=3|AF2|.
(1)求橢圓的離心率;
(2)設P是橢圓的左頂點,PA,PB分別與橢圓右準線交與M,N兩點,求證:以MN為直徑的圓D一定經(jīng)過一定點,并求出定點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年江西省高考數(shù)學仿真押題卷10(理科)(解析版) 題型:解答題

如圖,已知A是橢圓上的一個動點,F(xiàn)1,F(xiàn)2分別為橢圓的左、右焦點,弦AB過點F2,當AB⊥x軸時,恰好有|AF1|=3|AF2|.
(1)求橢圓的離心率;
(2)設P是橢圓的左頂點,PA,PB分別與橢圓右準線交與M,N兩點,求證:以MN為直徑的圓D一定經(jīng)過一定點,并求出定點坐標.

查看答案和解析>>

同步練習冊答案