(09年湖北八校聯(lián)考理)(12分)如圖,已知正三棱柱各棱長都為,為棱上的動點。
(Ⅰ)試確定的值,使得;
(Ⅱ)若,求二面角的大。
(Ⅲ)在(Ⅱ)的條件下,求點到面的距離。
解析:【法一】(Ⅰ)當時,作在上的射影. 連結(jié).
則平面,∴,∴是的中點,又,∴也是的中點,
即. 反之當時,取的中點,連接、.
∵為正三角形,∴. 由于為的中點時,
∵平面,∴平面,∴.……4′
(Ⅱ)當時,作在上的射影. 則底面.
作在上的射影,連結(jié),則.
∴為二面角的平面角。
又∵,∴,∴.
∴,又∵,∴.
∴,∴的大小為.…8′
(Ⅲ)設(shè)到面的距離為,則,∵,∴平面,
∴即為點到平面的距離,
又,∴.
即,解得.即到面的距離為.12′
【法二】以為原點,為軸,過點與垂直的直線為軸,
為軸,建立空間直角坐標系,如圖所示,
設(shè),則、、.
(Ⅰ)由得,
即,∴,即為的中點,
也即時,.…………4′
(Ⅱ)當時,點的坐標是. 取.
則,.
∴是平面的一個法向量。
又平面的一個法向量為.
∴,∴二面角的大小是.……8′
(Ⅲ)設(shè)到面的距離為,則,∴到面的距離為.科目:高中數(shù)學(xué) 來源: 題型:
(09年湖北八校聯(lián)考文)(12分)已知函數(shù),函數(shù)的圖像在點的切線方程是.
(Ⅰ)求函數(shù)的解析式:
(Ⅱ)若函數(shù)在區(qū)間上是單調(diào)函數(shù),求實數(shù)的取值范圍.查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(09年湖北八校聯(lián)考文)(12分)如圖,已知正三棱柱的各棱長都為,為棱上的動點.
(Ⅰ)當時,求證:.
(Ⅱ) 若,求二面角的大小.
(Ⅲ) 在(Ⅱ)的條件下,求點到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(09年湖北八校聯(lián)考理)(13分)
如圖,已知曲線與拋物線的交點分別為、,曲線和拋物線在點處的切線分別為、,且、的斜率分別為、.
(Ⅰ)當為定值時,求證為定值(與無關(guān)),并求出這個定值;
(Ⅱ)若直線與軸的交點為,當取得最小值時,求曲線和的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(09年湖北八校聯(lián)考文)(12分)
已知向量,(,).函數(shù),
的圖象的一個對稱中心與它相鄰的一條對稱軸之間的距離為,且過點.
(Ⅰ)求函數(shù)的表達式;
(Ⅱ)當時,求函數(shù)的單調(diào)區(qū)間。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com