(09年湖北八校聯(lián)考理)(12分)如圖,已知正三棱柱各棱長都為,為棱上的動點。

(Ⅰ)試確定的值,使得;

(Ⅱ)若,求二面角的大。

(Ⅲ)在(Ⅱ)的條件下,求點到面的距離。

解析:【法一】(Ⅰ)當時,作上的射影. 連結(jié).

平面,∴,∴的中點,又,∴也是的中點,

.  反之當時,取的中點,連接、.

為正三角形,∴.   由于的中點時,

平面,∴平面,∴.……4′

(Ⅱ)當時,作上的射影. 則底面.

上的射影,連結(jié),則.

為二面角的平面角。

又∵,∴,∴.

,又∵,∴.

,∴的大小為.…8′

(Ⅲ)設(shè)到面的距離為,則,∵,∴平面,

即為點到平面的距離,

,∴.

,解得.即到面的距離為.12′

【法二】以為原點,軸,過點與垂直的直線為軸,

軸,建立空間直角坐標系,如圖所示,

設(shè),則、.

(Ⅰ)由,

,∴,即的中點,

也即時,.…………4′

(Ⅱ)當時,點的坐標是.  取.

,.

是平面的一個法向量。

又平面的一個法向量為.

,∴二面角的大小是.……8′

(Ⅲ)設(shè)到面的距離為,則,∴到面的距離為.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(09年湖北八校聯(lián)考文)(12分)已知函數(shù),函數(shù)的圖像在點的切線方程是

    (Ⅰ)求函數(shù)的解析式:

    (Ⅱ)若函數(shù)在區(qū)間上是單調(diào)函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(09年湖北八校聯(lián)考文)(12分)如圖,已知正三棱柱的各棱長都為,為棱上的動點.

(Ⅰ)當時,求證:.                              

(Ⅱ) 若,求二面角的大小.              

(Ⅲ) 在(Ⅱ)的條件下,求點到平面的距離.              

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(09年湖北八校聯(lián)考理)(13分)

如圖,已知曲線與拋物線的交點分別為、,曲線和拋物線在點處的切線分別為、,且、的斜率分別為、.

(Ⅰ)當為定值時,求證為定值(與無關(guān)),并求出這個定值;

(Ⅱ)若直線軸的交點為,當取得最小值時,求曲線的方程。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(09年湖北八校聯(lián)考文)(12分)

已知向量,).函數(shù),

的圖象的一個對稱中心與它相鄰的一條對稱軸之間的距離為,且過點.

(Ⅰ)求函數(shù)的表達式;

(Ⅱ)當時,求函數(shù)的單調(diào)區(qū)間。

查看答案和解析>>

同步練習(xí)冊答案