【題目】已知橢圓的中心的中心在中心在坐標(biāo)原點,焦點在軸上且過點,離心率是

)求橢圓的標(biāo)準(zhǔn)方程.

)直線過點且與橢圓交于、兩點,若,求直線的方程.

【答案】(1) (2)

【解析】試題分析:(1)設(shè)橢圓的方程為),利用所給條件列出方程組,解出即可;(2)易判斷直線不存在斜率時不合題意,當(dāng)直線存在斜率時,設(shè)直線的方程為,與橢圓方程聯(lián)立方程組消掉得關(guān)于的一元二次方程,設(shè), ,由可得關(guān)于, 的方程,連同韋達(dá)定理聯(lián)立方程組即可求得值.

試題解析:()設(shè)橢圓的方程為,

由已知可得,計算得出, ,

故橢圓的標(biāo)準(zhǔn)方程為

)由已知,若直線的斜率不存在,則過點的直線的方程為,

此時, ,顯然不成立.

若直線的斜率存在,則設(shè)直線的方程為,

,

設(shè), ,

,式, ,,

,則,式,

①②③聯(lián)立計算得出

直線的方程為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖(1)是一個水平放置的正三棱柱, 是棱的中點.正三棱柱的正(主)視圖如圖(2)

()求正三棱柱的體積;

()證明: ;

()圖(1)中垂直于平面的平面有哪幾個?(直接寫出符合要求的平面即可,不必說明或證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左焦點與拋物線 的焦點重合,橢圓的離心率為,過點作斜率不為0的直線,交橢圓兩點,點,且為定值.

(1)求橢圓的方程;

(2)求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求證:函數(shù)是偶函數(shù);

(2)設(shè),求關(guān)于的函數(shù)時的值域的表達(dá)式;

(3)若關(guān)于的不等式時恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市準(zhǔn)備引進(jìn)優(yōu)秀企業(yè)進(jìn)行城市建設(shè). 城市的甲地、乙地分別對5個企業(yè)(共10個企業(yè))進(jìn)行綜合評估,得分情況如莖葉圖所示.

(Ⅰ)根據(jù)莖葉圖,求乙地對企業(yè)評估得分的平均值和方差;

(Ⅱ)規(guī)定得分在85分以上為優(yōu)秀企業(yè). 若從甲、乙兩地準(zhǔn)備引進(jìn)的優(yōu)秀企業(yè)中各隨機(jī)選取1個,求這兩個企業(yè)得分的差的絕對值不超過5分的概率.

注:方差

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】按下面的流程圖進(jìn)行計算.若輸出的,則輸入的正實數(shù)值的個數(shù)最多為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左右焦點分別為, 若橢圓上一點滿足,且橢圓過點,過點的直線與橢圓交于兩點

1)求橢圓的方程;

2)若點是點軸上的垂足,延長交橢圓,求證: 三點共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【選修4-4:坐標(biāo)系與參數(shù)方程】

極坐標(biāo)系的極點為直角坐標(biāo)系的原點,極軸為軸的正半軸,兩神坐標(biāo)系中的長度單位相同.已知曲線的極坐標(biāo)方程為

(Ⅰ)求曲線的直角坐標(biāo)方程;

(Ⅱ)在曲線上求一點,使它到直線 為參數(shù))的距離最短,寫出點的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若對任意,存在,使,則實數(shù)b的取值范圍是

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案