15.下列推斷錯(cuò)誤的個(gè)數(shù)是( 。
①命題“若x2-3x+2=0,則x=1”的逆否命題為“若x≠1,則x2-3x+2≠0”
②命題“若x2=1,則x=1”的否命題為:若“x2=1,則x≠1”
③“x<1”是“x2-3x+2>0”的充分不必要條件
④若p∧q為假命題,則p,q均為假命題.
A.1B.2C.3D.4

分析 ①,根據(jù)命題與其逆否命題的關(guān)系判定;
②,命題“的否命題,同時(shí)否定條件、結(jié)論”
③,“x<1”時(shí)“x2-3x+2>0”成立,“x2-3x+2>0”時(shí)“x>2,或x<1“;
④,若p∧q為假命題,則p,q至少有一個(gè)為假命題.

解答 解:對于①,命題“若x2-3x+2=0,則x=1”的逆否命題為“若x≠1,則x2-3x+2≠0”正確;
對于②,命題“若x2=1,則x=1”的否命題為:若“x2≠1,則x≠1”,故錯(cuò)
對于③,“x<1”時(shí)“x2-3x+2>0”成立,“x2-3x+2>0”時(shí)“x>2,或x<1“,故正確;
對于④,若p∧q為假命題,則p,q至少有一個(gè)為假命題,故錯(cuò).
故選:B

點(diǎn)評 本題考查了命題真假判定,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)=2sin($\frac{x+φ}{2}$)cos($\frac{x+φ}{2}$)(|φ|<$\frac{π}{2}$),且對任意的x∈R,f(x)≤f($\frac{π}{6}$),則( 。
A.f(x)=f(x+π)B.f(x)=f(x+$\frac{π}{2}$)C.f(x)=f($\frac{π}{3}$-x)D.f(x)=f($\frac{π}{6}$-x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.如圖,在矩形ABCD中,$AB=3,AD=3\sqrt{2}$,點(diǎn)E為BC的中點(diǎn),如果DF=2FC,那么$\overrightarrow{AF}•\overrightarrow{BE}$的值是9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓x2+2y2=1上存在兩點(diǎn)A,B關(guān)于直線L:y=4x+b對稱,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知O為坐標(biāo)原點(diǎn),F(xiàn)是橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左焦點(diǎn),A,B分別為C的左,右頂點(diǎn).P為C上一點(diǎn),且PF⊥x軸.過點(diǎn)A的直線l與線段PF交于點(diǎn)M,與y軸交于點(diǎn)E.若直線BM經(jīng)過OE的中點(diǎn),則C的離心率為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.計(jì)算:(1)0.027${\;}^{-\frac{1}{3}}$-(-$\frac{1}{7}$)-2+256${\;}^{\frac{3}{4}}$-3-1+($\sqrt{2}$-1)0
(2)${log_{2.5}}6.25+lg0.01+ln\sqrt{e}-{2^{1+{{log}_2}3}}$
(3)$lg{5}^{2}+\frac{2}{3}lg8+lg5•lg20+{(lg2)}^{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=2sin(x-$\frac{π}{3}$),
(1)寫出函數(shù)f(x)的周期;
(2)將函數(shù)f(x)圖象上所有的點(diǎn)向左平移$\frac{π}{3}$個(gè)單位,得到函數(shù)g(x)的圖象,寫出函數(shù)g(x)的表達(dá)式,并判斷函數(shù)g(x)的奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.$命題?x∈[{0,\frac{π}{2}}],sinx+cosx≥2是$假命題(填真命題或假命題)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.(1)求函數(shù)f(x)=xlnx-(1-x)ln(1-x)在0<x≤$\frac{1}{2}$上的最大值;
 (2)證明:不等式x1-x+(1-x)x≤$\sqrt{2}$在(0,1)上恒成立.

查看答案和解析>>

同步練習(xí)冊答案