1.已知數(shù)列{an}是等差數(shù)列,且a1,a2(a1<a2)分別為方程x2-6x+5=0的二根.
(1)求數(shù)列{an}的前n項(xiàng)和Sn;
(2)在(1)中,設(shè)bn=$\frac{S_n}{n+c}$,求證:當(dāng)c=-$\frac{1}{2}$時(shí),數(shù)列{bn}是等差數(shù)列.

分析 (1)根據(jù)等差數(shù)列的通項(xiàng)公式求出首項(xiàng)和公差,即可求{an}的通項(xiàng)公式;
(2)先化簡bn,再利用定義證明即可.

解答 解:(1)解方程x2-6x+5=0得其二根分別為1和5,
∵a1,a2(a1<a2)分別為方程x2-6x+5=0的二根
∴以a1=1,a2=5,
∴{an}等差數(shù)列的公差為4,
∴${S_n}=n•1+\frac{{n({n-1})}}{2}•4$=2n2-n;
(2)證明:當(dāng)$c=-\frac{1}{2}$時(shí),${b_n}=\frac{S_n}{n+c}$=$\frac{{2{n^2}-n}}{{n-\frac{1}{2}}}=2n$,
∴bn+1-bn=2(n+1)-2n=2,
∴{bn}是以2為首項(xiàng),公差為2的等差數(shù)列.

點(diǎn)評 本題主要考查等差數(shù)列的通項(xiàng)公式和等差數(shù)列的定義,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.集合A={1,2,3,4},B={x|(x-1)(x-5)<0},則A∩B={2,3,4}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知${(x-\frac{a}{x})^7}$展開式中x3的系數(shù)為84,則正實(shí)數(shù)a的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若單位向量$\overrightarrow a,\overrightarrow b$滿足$|{2\overrightarrow a-\overrightarrow b}|=\sqrt{2}$,則向量$\overrightarrow a,\overrightarrow b$的夾角的余弦值為$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}x=tcosα\\ y=1+tsinα\end{array}\right.$(t為參數(shù),$\frac{π}{2}≤α<π$),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ=2cosθ.
(Ⅰ)討論直線l與圓C的公共點(diǎn)個(gè)數(shù);
(Ⅱ)過極點(diǎn)作直線l的垂線,垂足為P,求點(diǎn)P的軌跡與圓C相交所得弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=|x-1|+|x+1|-2.
(1)求不等式f(x)≥1的解集;
(2)若關(guān)于x的不等式f(x)≥a2-a-2在R上恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知某口袋中有3個(gè)白球和a個(gè)黑球(a∈N*),現(xiàn)從中隨機(jī)取出一球,再換回一個(gè)不同顏色的球(即若取出的是白球,則放回一個(gè)黑球;若取出的是黑球,則放回一個(gè)白球),記換好球后袋中白球的個(gè)數(shù)是ξ.若Eξ=3,則Dξ=( 。
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知復(fù)數(shù)z滿足(z-1)i=|i+1|,則z=( 。
A.-2-iB.2-iC.$1-\sqrt{2}i$D.$-1-\sqrt{2}i$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.?dāng)?shù)列{an}滿足a1=-1,an+1+2an=3.
(Ⅰ)證明{an-1}是等比數(shù)列,并求數(shù)列{an}通項(xiàng)公式;
(Ⅱ)已知符號函數(shù)sgn(x)=$\left\{\begin{array}{l}{1,x>0}\\{0,x=0}\\{-1,x<0}\end{array}\right.$,設(shè)bn=an•sgn{an},求數(shù)列{bn}的前100項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊答案