精英家教網 > 高中數學 > 題目詳情
函數y=(3-x2)ex的單調遞增區(qū)間是(  )
A.(-∞,0)
B.(0,+∞)
C.(-∞,-3)和(1,+∞)
D.(-3,1)
D
y'=-2xex+(3-x2)ex=ex(-x2-2x+3)>0x2+2x-3<0-3<x<1,∴函數y=(3-x2)ex的單調遞增區(qū)間是(-3,1).
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知
(1)若存在單調遞減區(qū)間,求實數的取值范圍;
(2)若,求證:當時,恒成立;
(3)利用(2)的結論證明:若,則.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

函數的定義域為開區(qū)間,導函數內的圖像如圖所示,則函數在開區(qū)間內有極小值點(    )
A.1個B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

設函數f(x)的定義域為R,x0(x0≠0)是f(x)的極大值點,以下結論一定正確的是(  )
A.?x∈R,f(x)≤f(x0)
B.-x0是f(-x)的極小值點
C.-x0是-f(x)的極小值點
D.-x0是-f(-x)的極小值點

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

函數f(x)=xln x的單調遞減區(qū)間是 (  ).
A.B.C.D.(e,+∞)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

設f(x),g(x)在[a,b]上可導,且f′(x)>g′(x),則當a<x<b時,有(  )
A.f(x)>g(x)
B.f(x)<g(x)
C.f(x)+g(a)>g(x)+f(a)
D.f(x)+g(b)>g(x)+f(b)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

設f(x)是定義在R上以2為周期的偶函數,已知x∈(0,1)時,f(x)=lo(1-x),則函數f(x)在(1,2)上(  )
A.是增函數,且f(x)<0
B.是增函數,且f(x)>0
C.是減函數,且f(x)<0
D.是減函數,且f(x)>0

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數f(x)=ex(axb)-x2-4x,曲線yf(x)在點(0,f(0))處的切線方程為y=4x+4.
(1)求ab的值;
(2)討論f(x)的單調性,并求f(x)的極大值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

函數的單調遞增區(qū)間是(   )
A.(-∞,2)B.(0,3)C.(1,4)D.(2,+∞)

查看答案和解析>>

同步練習冊答案